A Green's function approach to the linear response of a driven dissipative optomechanical system

被引:10
作者
Motazedifard, Ali [1 ,2 ]
Dalafi, A. [3 ]
Naderi, M. H. [1 ,2 ]
机构
[1] Univ Isfahan, Dept Phys, Esfahan 8174673441, Iran
[2] Univ Isfahan, Dept Phys, Quantum Opt Grp, Esfahan 8174673441, Iran
[3] Shahid Beheshti Univ, Laser & Plasma Res Inst, Tehran 1983969411, Iran
基金
美国国家科学基金会;
关键词
open quantum systems; linear response theory; Green' s function; optomechanics; quantum optics; BOSE-EINSTEIN CONDENSATE; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; CAVITY OPTOMECHANICS; QUANTUM; GENERATION; LIGHT;
D O I
10.1088/1751-8121/abf3e9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we first try to shed light on the ambiguities that exist in the literature in the generalization of the standard linear response theory (LRT) which has been basically formulated for closed systems to the theory of open quantum systems in the Heisenberg picture. Then, we investigate the linear response of a driven-dissipative optomechanical system (OMS) to a weak time-dependent perturbation using the so-called generalized LRT. It is shown how the Green's function equations of motion of a standard OMS as an open quantum system can be obtained from the quantum Langevin equations (QLEs) in the Heisenberg picture. The obtained results explain a wealth of phenomena, including the anti-resonance, normal mode splitting and the optomechanically induced transparency (OMIT). Furthermore, the reason why the Stokes or anti-Stokes sidebands are amplified or attenuated in the red or blue detuning regimes is clearly explained which is in exact coincidence, especially in the weak-coupling regime, with the Raman-scattering picture.
引用
收藏
页数:22
相关论文
共 71 条
[1]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]   Nonequilibrium Dynamical Mean-Field Theory: An Auxiliary Quantum Master Equation Approach [J].
Arrigoni, Enrico ;
Knap, Michael ;
von der Linden, Wolfgang .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]  
Ban M., 2015, Quantum Stud.: Math. Found, V2, P51
[5]   Linear response theory for open systems: Quantum master equation approach [J].
Ban, Masashi ;
Kitajima, Sachiko ;
Arimitsu, Toshihico ;
Shibata, Fumiaki .
PHYSICAL REVIEW A, 2017, 95 (02)
[6]   Anti-resonance in a one-dimensional chain of driven coupled oscillators [J].
Belbasi, Somayyeh ;
Foulaadvand, M. Ebrahim ;
Joe, Yong S. .
AMERICAN JOURNAL OF PHYSICS, 2014, 82 (01) :32-38
[7]   Quantum correlations in optomechanical crystals [J].
Bemani, F. ;
Roknizadeh, R. ;
Motazedifard, A. ;
Naderi, M. H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2019, 99 (06)
[8]   Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity [J].
Bemani, F. ;
Motazedifard, Ali ;
Roknizadeh, R. ;
Naderi, M. H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2017, 96 (02)
[9]  
Bowen WP, 2016, QUANTUM OPTOMECHANICS, P1
[10]   Cavity optomechanics with a Bose-Einstein condensate [J].
Brennecke, Ferdinand ;
Ritter, Stephan ;
Donner, Tobias ;
Esslinger, Tilman .
SCIENCE, 2008, 322 (5899) :235-238