Almost periodic solutions to Josephson's equation

被引:7
作者
Belley, JM [1 ]
Drissi, KS
机构
[1] Univ Sherbrooke, Fac Sci, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Cadi Ayyad, Fac Sci, Marrakech, Morocco
关键词
D O I
10.1088/0951-7715/16/1/303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under certain a priori bounds on the mean of an almost periodic forcing Josephson's equation x" + (2c + d cos x)x'+ a sin x = f, with 0 < (a - cd)(2) + c(2)d(2) < c(4), is shown to admit a twice continuously differentiable solution of the same type as f.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1988, EXPO MATH
[2]  
[Anonymous], REAL COMPLEX ANAL
[3]  
ARONSON DG, 1997, PHYSICA D, V1, P157
[4]   Existence of almost periodic weak type solutions for the conservative forced pendulum equation [J].
Belley, JM ;
Fournier, G ;
Hayes, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (01) :205-224
[5]  
BELLEY JM, 1992, AEQUATIONES MATH, V44, P100
[6]   FORCED QUASI-PERIODIC AND ALMOST PERIODIC OSCILLATIONS OF NONLINEAR DUFFING EQUATIONS [J].
BERGER, MS ;
CHEN, YY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (03) :249-257
[7]  
Besicovitch A.S., 1932, ALMOST PERIODIC FUNC
[8]  
BLOT J, 1991, CR ACAD SCI I-MATH, V313, P487
[9]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[10]  
COPRDUNEANU C, 1968, ALMOST PERIODIC FUNC