CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores

被引:428
作者
Rentzsch, Philipp [1 ,2 ]
Schubach, Max [1 ,2 ]
Shendure, Jay [3 ,4 ]
Kircher, Martin [1 ,2 ]
机构
[1] Charite Univ Med Berlin, D-10117 Berlin, Germany
[2] Berlin Inst Hlth BIH, D-10178 Berlin, Germany
[3] Univ Washington, Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[4] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
关键词
PATHOGENIC VARIANTS; HUMAN TRANSCRIPTOME; GENETIC-VARIATION; IDENTIFICATION; ANNOTATIONS; EXPRESSION;
D O I
10.1186/s13073-021-00835-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundSplicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond those occurring at donor and acceptor dinucleotides. To address this, various methods aim to predict variant effects on splicing. Recently, deep neural networks (DNNs) have been shown to achieve better results in predicting splice variants than other strategies.MethodsIt has been unclear how best to integrate such process-specific scores into genome-wide variant effect predictors. Here, we use a recently published experimental data set to compare several machine learning methods that score variant effects on splicing. We integrate the best of those approaches into general variant effect prediction models and observe the effect on classification of known pathogenic variants.ResultsWe integrate two specialized splicing scores into CADD (Combined Annotation Dependent Depletion; cadd.gs.washington.edu), a widely used tool for genome-wide variant effect prediction that we previously developed to weight and integrate diverse collections of genomic annotations. With this new model, CADD-Splice, we show that inclusion of splicing DNN effect scores substantially improves predictions across multiple variant categories, without compromising overall performance.ConclusionsWhile splice effect scores show superior performance on splice variants, specialized predictors cannot compete with other variant scores in general variant interpretation, as the latter account for nonsense and missense effects that do not alter splicing. Although only shown here for splice scores, we believe that the applied approach will generalize to other specific molecular processes, providing a path for the further improvement of genome-wide variant effect prediction.
引用
收藏
页数:12
相关论文
共 60 条
[31]   RNA splicing is a primary link between genetic variation and disease [J].
Li, Yang I. ;
van de Geijn, Bryce ;
Raj, Anil ;
Knowles, David A. ;
Petti, Allegra A. ;
Golan, David ;
Gilad, Yoav ;
Pritchard, Jonathan K. .
SCIENCE, 2016, 352 (6285) :600-604
[32]   ASCOT identifies key regulators of neuronal subtype-specific splicing [J].
Ling, Jonathan P. ;
Wilks, Christopher ;
Charles, Rone ;
Leavey, Patrick J. ;
Ghosh, Devlina ;
Jiang, Lizhi ;
Santiago, Clayton P. ;
Pang, Bo ;
Venkataraman, Anand ;
Clark, Brian S. ;
Nellore, Abhinav ;
Langmead, Ben ;
Blackshaw, Seth .
NATURE COMMUNICATIONS, 2020, 11 (01)
[33]   dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs [J].
Liu, Xiaoming ;
Wu, Chunlei ;
Li, Chang ;
Boerwinkle, Eric .
HUMAN MUTATION, 2016, 37 (03) :235-241
[34]   CADD score has limited clinical validity for the identification of pathogenic variants in noncoding regions in a hereditary cancer panel [J].
Mather, Cheryl A. ;
Mooney, Sean D. ;
Salipante, Stephen J. ;
Scroggins, Sheena ;
Wu, David ;
Pritchard, Colin C. ;
Shirts, Brian H. .
GENETICS IN MEDICINE, 2016, 18 (12) :1269-1275
[35]   The Ensembl Variant Effect Predictor [J].
McLaren, William ;
Gil, Laurent ;
Hunt, Sarah E. ;
Riat, Harpreet Singh ;
Ritchie, Graham R. S. ;
Thormann, Anja ;
Flicek, Paul ;
Cunningham, Fiona .
GENOME BIOLOGY, 2016, 17
[36]   The human transcriptome across tissues and individuals [J].
Mele, Marta ;
Ferreira, Pedro G. ;
Reverter, Ferran ;
DeLuca, David S. ;
Monlong, Jean ;
Sammeth, Michael ;
Young, Taylor R. ;
Goldmann, Jakob M. ;
Pervouchine, Dmitri D. ;
Sullivan, Timothy J. ;
Johnson, Rory ;
Segre, Ayellet V. ;
Djebali, Sarah ;
Niarchou, Anastasia ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Calvo, Miquel ;
Getz, Gad ;
Dermitzakis, Emmanouil T. ;
Ardlie, Kristin G. ;
Guigo, Roderic .
SCIENCE, 2015, 348 (6235) :660-665
[37]   Genetic regulatory variation in populations informs transcriptome analysis in rare disease [J].
Mohammadi, Pejman ;
Castel, Stephane E. ;
Cummings, Beryl B. ;
Einson, Jonah ;
Sousa, Christina ;
Hoffman, Paul ;
Donkervoort, Sandra ;
Jiang, Zhuoxun ;
Mohassel, Payam ;
Foley, A. Reghan ;
Wheeler, Heather E. ;
Im, Hae Kyung ;
Bonnemann, Carsten G. ;
MacArthur, Daniel G. ;
Lappalainen, Tuuli .
SCIENCE, 2019, 366 (6463) :351-+
[38]   MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing [J].
Mort, Matthew ;
Sterne-Weiler, Timothy ;
Li, Biao ;
Ball, Edward V. ;
Cooper, David N. ;
Radivojac, Predrag ;
Sanford, Jeremy R. ;
Mooney, Sean D. .
GENOME BIOLOGY, 2014, 15 (01)
[39]   When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants [J].
Pagel, Kymberleigh A. ;
Pejaver, Vikas ;
Lin, Guan Ning ;
Nam, Hyun-Jun ;
Mort, Matthew ;
Cooper, David N. ;
Sebat, Jonathan ;
Iakoucheva, Lilia M. ;
Mooney, Sean D. ;
Radivojac, Predrag .
BIOINFORMATICS, 2017, 33 (14) :I389-I398
[40]   Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing [J].
Pan, Qun ;
Shai, Ofer ;
Lee, Leo J. ;
Frey, J. ;
Blencowe, Benjamin J. .
NATURE GENETICS, 2008, 40 (12) :1413-1415