CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores

被引:429
作者
Rentzsch, Philipp [1 ,2 ]
Schubach, Max [1 ,2 ]
Shendure, Jay [3 ,4 ]
Kircher, Martin [1 ,2 ]
机构
[1] Charite Univ Med Berlin, D-10117 Berlin, Germany
[2] Berlin Inst Hlth BIH, D-10178 Berlin, Germany
[3] Univ Washington, Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[4] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
关键词
PATHOGENIC VARIANTS; HUMAN TRANSCRIPTOME; GENETIC-VARIATION; IDENTIFICATION; ANNOTATIONS; EXPRESSION;
D O I
10.1186/s13073-021-00835-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundSplicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond those occurring at donor and acceptor dinucleotides. To address this, various methods aim to predict variant effects on splicing. Recently, deep neural networks (DNNs) have been shown to achieve better results in predicting splice variants than other strategies.MethodsIt has been unclear how best to integrate such process-specific scores into genome-wide variant effect predictors. Here, we use a recently published experimental data set to compare several machine learning methods that score variant effects on splicing. We integrate the best of those approaches into general variant effect prediction models and observe the effect on classification of known pathogenic variants.ResultsWe integrate two specialized splicing scores into CADD (Combined Annotation Dependent Depletion; cadd.gs.washington.edu), a widely used tool for genome-wide variant effect prediction that we previously developed to weight and integrate diverse collections of genomic annotations. With this new model, CADD-Splice, we show that inclusion of splicing DNN effect scores substantially improves predictions across multiple variant categories, without compromising overall performance.ConclusionsWhile splice effect scores show superior performance on splice variants, specialized predictors cannot compete with other variant scores in general variant interpretation, as the latter account for nonsense and missense effects that do not alter splicing. Although only shown here for splice scores, we believe that the applied approach will generalize to other specific molecular processes, providing a path for the further improvement of genome-wide variant effect prediction.
引用
收藏
页数:12
相关论文
共 60 条
[11]   MMSplice: modular modeling improves the predictions of genetic variant effects on splicing [J].
Cheng, Jun ;
Thi Yen Duong Nguyen ;
Cygan, Kamil J. ;
Celik, Muhammed Hasan ;
Fairbrother, William G. ;
Avsec, Ziga ;
Gagneur, Julien .
GENOME BIOLOGY, 2019, 20 (1)
[12]   A Multiplexed Assay for Exon Recognition Reveals that an Unappreciated Fraction of Rare Genetic Variants Cause Large-Effect Splicing Disruptions [J].
Chong, Rockie ;
Insigne, Kimberly D. ;
Yao, David ;
Burghard, Christina P. ;
Wang, Jeffrey ;
Hsiao, Yun-Hua E. ;
Jones, Eric M. ;
Goodman, Daniel B. ;
Xiao, Xinshu ;
Kosuri, Sriram .
MOLECULAR CELL, 2019, 73 (01) :183-+
[13]   Transcript expression-aware annotation improves rare variant interpretation [J].
Cummings, Beryl B. ;
Karczewski, Konrad J. ;
Kosmicki, Jack A. ;
Seaby, Eleanor G. ;
Watts, Nicholas A. ;
Singer-Berk, Moriel ;
Mudge, Jonathan M. ;
Karjalainen, Juha ;
Satterstrom, F. Kyle ;
O'Donnell-Luria, Anne H. ;
Poterba, Timothy ;
Seed, Cotton ;
Solomonson, Matthew ;
Alfoldi, Jessica ;
Daly, Mark J. ;
MacArthur, Daniel G. .
NATURE, 2020, 581 (7809) :452-+
[14]   Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP plus [J].
Davydov, Eugene V. ;
Goode, David L. ;
Sirota, Marina ;
Cooper, Gregory M. ;
Sidow, Arend ;
Batzoglou, Serafim .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (12)
[15]   The human noncoding genome defined by genetic diversity [J].
di Iulio, Julia ;
Bartha, Istvan ;
Wong, Emily H. M. ;
Yu, Hung-Chun ;
Lavrenko, Victor ;
Yang, Dongchan ;
Jung, Inkyung ;
Hicks, Michael A. ;
Shah, Naisha ;
Kirkness, Ewen F. ;
Fabani, Martin M. ;
Biggs, William H. ;
Ren, Bing ;
Venter, J. Craig ;
Telenti, Amalio .
NATURE GENETICS, 2018, 50 (03) :333-+
[16]   A map of constrained coding regions in the human genome [J].
Havrilla, James M. ;
Pedersen, Brent S. ;
Layer, Ryan M. ;
Quinlan, Aaron R. .
NATURE GENETICS, 2019, 51 (01) :88-+
[17]   Predicting the effects of frameshifting indels [J].
Hu, Jing ;
Ng, Pauline C. .
GENOME BIOLOGY, 2012, 13 (02)
[18]   A spectral approach integrating functional genomic annotations for coding and noncoding variants [J].
Ionita-Laza, Iuliana ;
McCallum, Kenneth ;
Xu, Bin ;
Buxbaum, Joseph D. .
NATURE GENETICS, 2016, 48 (02) :214-220
[19]   S-CAP extends pathogenicity prediction to genetic variants that affect RNA splicing [J].
Jagadeesh, Karthik A. ;
Paggi, Joseph M. ;
Ye, James S. ;
Stenson, Peter D. ;
Cooper, David N. ;
Bernstein, Jonathan A. ;
Bejerano, Gill .
NATURE GENETICS, 2019, 51 (04) :755-+
[20]   Predicting Splicing from Primary Sequence with Deep Learning [J].
Jaganathan, Kishore ;
Panagiotopoulou, Sofia Kyriazopoulou ;
McRae, Jeremy F. ;
Darbandi, Siavash Fazel ;
Knowles, David ;
Li, Yang I. ;
Kosmicki, Jack A. ;
Arbelaez, Juan ;
Cui, Wenwu ;
Schwartz, Grace B. ;
Chow, Eric D. ;
Kanterakis, Efstathios ;
Gao, Hong ;
Kia, Amirali ;
Batzoglou, Serafim ;
Sanders, Stephan J. ;
Farh, Kyle Kai-How .
CELL, 2019, 176 (03) :535-+