CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores

被引:428
作者
Rentzsch, Philipp [1 ,2 ]
Schubach, Max [1 ,2 ]
Shendure, Jay [3 ,4 ]
Kircher, Martin [1 ,2 ]
机构
[1] Charite Univ Med Berlin, D-10117 Berlin, Germany
[2] Berlin Inst Hlth BIH, D-10178 Berlin, Germany
[3] Univ Washington, Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[4] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
关键词
PATHOGENIC VARIANTS; HUMAN TRANSCRIPTOME; GENETIC-VARIATION; IDENTIFICATION; ANNOTATIONS; EXPRESSION;
D O I
10.1186/s13073-021-00835-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundSplicing of genomic exons into mRNAs is a critical prerequisite for the accurate synthesis of human proteins. Genetic variants impacting splicing underlie a substantial proportion of genetic disease, but are challenging to identify beyond those occurring at donor and acceptor dinucleotides. To address this, various methods aim to predict variant effects on splicing. Recently, deep neural networks (DNNs) have been shown to achieve better results in predicting splice variants than other strategies.MethodsIt has been unclear how best to integrate such process-specific scores into genome-wide variant effect predictors. Here, we use a recently published experimental data set to compare several machine learning methods that score variant effects on splicing. We integrate the best of those approaches into general variant effect prediction models and observe the effect on classification of known pathogenic variants.ResultsWe integrate two specialized splicing scores into CADD (Combined Annotation Dependent Depletion; cadd.gs.washington.edu), a widely used tool for genome-wide variant effect prediction that we previously developed to weight and integrate diverse collections of genomic annotations. With this new model, CADD-Splice, we show that inclusion of splicing DNN effect scores substantially improves predictions across multiple variant categories, without compromising overall performance.ConclusionsWhile splice effect scores show superior performance on splice variants, specialized predictors cannot compete with other variant scores in general variant interpretation, as the latter account for nonsense and missense effects that do not alter splicing. Although only shown here for splice scores, we believe that the applied approach will generalize to other specific molecular processes, providing a path for the further improvement of genome-wide variant effect prediction.
引用
收藏
页数:12
相关论文
共 60 条
[1]   GeVIR is a continuous gene-level metric that uses variant distribution patterns to prioritize disease candidate genes [J].
Abramovs, Nikita ;
Brass, Andrew ;
Tassabehji, May .
NATURE GENETICS, 2020, 52 (01) :35-+
[2]   Splicing mutations in human genetic disorders: examples, detection, and confirmation [J].
Abramowicz, Anna ;
Gos, Monika .
JOURNAL OF APPLIED GENETICS, 2018, 59 (03) :253-268
[3]  
Adzhubei Ivan, 2013, Curr Protoc Hum Genet, VChapter 7, DOI 10.1002/0471142905.hg0720s76
[4]   The Ensembl gene annotation system [J].
Aken, Bronwen L. ;
Ayling, Sarah ;
Barrell, Daniel ;
Clarke, Laura ;
Curwen, Valery ;
Fairley, Susan ;
Banet, Julio Fernandez ;
Billis, Konstantinos ;
Giron, Carlos Garcia ;
Hourlier, Thibaut ;
Howe, Kevin ;
Kahari, Andreas ;
Kokocinski, Felix ;
Martin, Fergal J. ;
Murphy, Daniel N. ;
Nag, Rishi ;
Ruffier, Magali ;
Schuster, Michael ;
Tang, Y. Amy ;
Vogel, Jan-Hinnerk ;
White, Simon ;
Zadissa, Amonida ;
Flicek, Paul ;
Searle, Stephen M. J. .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2016,
[5]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[6]   Personalised analytics for rare disease diagnostics [J].
Anderson, Denise ;
Baynam, Gareth ;
Blackwell, Jenefer M. ;
Lassmann, Timo .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   The Kipoi repository accelerates community exchange and reuse of predictive models for genomics [J].
Avsec, Ziga ;
Kreuzhuber, Roman ;
Israeli, Johnny ;
Xu, Nancy ;
Cheng, Jun ;
Shrikumar, Avanti ;
Banerjee, Abhimanyu ;
Kim, Daniel S. ;
Beier, Thorsten ;
Urban, Lara ;
Kundaje, Anshul ;
Stegle, Oliver ;
Gagneur, Julien .
NATURE BIOTECHNOLOGY, 2019, 37 (06) :592-600
[8]   Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing [J].
Baeza-Centurion, Pablo ;
Minana, Belen ;
Schmiedel, Jorn M. ;
Valcarcel, Juan ;
Lehner, Ben .
CELL, 2019, 176 (03) :549-+
[9]   Alternative splicing as a regulator of development and tissue identity [J].
Baralle, Francisco E. ;
Giudice, Jimena .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (07) :437-451
[10]   Identification of deleterious synonymous variants in human genomes [J].
Buske, Orion J. ;
Manickaraj, AshokKumar ;
Mital, Seema ;
Ray, Peter N. ;
Brudno, Michael .
BIOINFORMATICS, 2013, 29 (15) :1843-1850