Enhanced Antibacterial effect using carbohydrates biotemplate of ZnO nano thin films

被引:51
作者
Dhanalakshmi, A. [1 ,3 ]
Palanimurugan, A. [2 ]
Natarajan, B. [3 ]
机构
[1] Bharathiar Univ, Ctr Res & Dev, Coimbatore 641046, Tamil Nadu, India
[2] Raja Doraisingam Govt Arts Coll, Post Grad & Res Dept Chem, Sivagangai 630561, Tamil Nadu, India
[3] Raja Doraisingam Govt Arts Coll, Post Grad & Res Dept Phys, Sivagangai 630561, Tamil Nadu, India
关键词
ZnO thin film; SILAR technique; Carbohydrate biotemplates; Antibacterial property; CHEMICAL-DEPOSITION; QUANTUM DOTS; NANOSTRUCTURES;
D O I
10.1016/j.carbpol.2017.03.071
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Carbohydrate biotemplates of glucose (C6H12O6) and starch (C6H12O6)(n) in to Zinc oxide (ZnO) nano thin films (NTFs) prepared for enhanced antibacterial activity by Successive Ionic Layer Adsorption Reaction (SILAR). X-ray diffraction (XRD) patterns revealed that the crystalline size values were decreased by the incorporation of carbohydrate molecules. Scanning electron microscope (SEM) and Field emission scanning electron microscope (FESEM) confirmed that the different morphologies by the addition of glucose and starch. The interactions of carbohydrate molecules with ZnO were identified by using FTIR and EDAX. Energy band gap of samples was calculated by UV absorption spectra. The emission property of Zinc oxide, Glucose/ZnO and Starch/ZnO was studied by photoluminescence (PL) spectra. The antibacterial activity of carbohydrate biotemplates (Cbts-ZnO) results showed that enhanced effect than pure ZnO for the selected pathogenic bacteria's. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 37 条
[1]   Synthesis, characterization and antibacterial efficiency of ZnO nanoparticles using rice as soft bio-template [J].
Amutha, C. ;
Thanikaikarasan, S. ;
Ramadas, V. ;
Bahadur, S. Asath ;
Natarajan, B. ;
Kalyani, R. .
OPTIK, 2016, 127 (10) :4281-4286
[2]  
Bhoopathi G., 2014, INT SCI C ASS, V3, P238
[3]   Low-temperature solution growth of ZnO nanotube arrays [J].
Chae, Ki-Woong ;
Zhang, Qifeng ;
Kim, Jeong Seog ;
Jeong, Yoon-Ha ;
Cao, Guozhong .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2010, 1 :128-134
[4]   Room temperature chemical synthesis of flower-like ZnO nanostructures [J].
Chakraborty, S. ;
Kole, A. K. ;
Kumbhakar, P. .
MATERIALS LETTERS, 2012, 67 (01) :362-364
[5]   Nanocrystalline Mg Doped ZnO Dilute Magnetic Semiconductor Prepared by Chemical Route [J].
Chandramohan, R. ;
Thirumalai, J. ;
Vijayan, T. A. ;
Valanarasu, S. ;
Vizhian, S. Elhil ;
Srikanth, M. ;
Swaminathan, V. .
ADVANCED SCIENCE LETTERS, 2010, 3 (03) :319-322
[6]  
Chen S. H., 2010, NANO BIOMED ENG, V2, P15
[7]  
Deepu T., 2014, INDO AM J PHARM SCI, V4, P1612
[8]   Semiconductor Quantum Dots in Chemical Sensors and Biosensors [J].
Frasco, Manuela F. ;
Chaniotakis, Nikos .
SENSORS, 2009, 9 (09) :7266-7286
[9]   ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices [J].
Han, Jingbin ;
Fan, Fengru ;
Xu, Chen ;
Lin, Shisheng ;
Wei, Min ;
Duan, Xue ;
Wang, Zhong Lin .
NANOTECHNOLOGY, 2010, 21 (40)
[10]   Characterization of nanostructures of ZnO and ZnMnO films deposited by successive ionic layer adsorption and reaction method [J].
Jimenez-Garcia, F. N. ;
Espinosa-Arbelaez, D. G. ;
Vargas-Hernandez, C. ;
del Real, A. ;
Rodriguez-Garcia, M. E. .
THIN SOLID FILMS, 2011, 519 (22) :7638-7643