Gamma-Ray Point-Source Localization and Sparse Image Reconstruction Using Poisson Likelihood

被引:29
作者
Hellfeld, Daniel [1 ]
Joshi, Tenzing H. Y. [2 ]
Bandstra, Mark S. [2 ]
Cooper, Reynold J. [2 ]
Quiter, Brian J. [2 ]
Vetter, Kai [1 ,2 ]
机构
[1] Univ Calif Berkeley, Nucl Engn Dept, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, Berkeley, CA 94720 USA
关键词
Gamma-ray imaging; maximum likelihood; Poisson likelihood; radiological source search; source localization; MAXIMUM-LIKELIHOOD; EMISSION; SYSTEM;
D O I
10.1109/TNS.2019.2930294
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gamma-ray imaging attempts to reconstruct the spatial and intensity distribution of gamma-emitting radionuclides from a set of measurements. Generally, this problem is solved by discretizing the spatial dimensions and employing the maximum likelihood expectation maximization (ML-EM) algorithm, with or without some form of regularization. While the generality of this formulation enables use in a wide variety of scenarios, it is susceptible to overfitting, limited by the discretization of spatial coordinates, and can be computationally expensive. We present a novel approach to 3D gamma-ray image reconstruction for scenarios where sparsity may be assumed, for example, radiological source search. In this paper, we first formulate a point-source localization (PSL) approach as an optimization problem, where both position and source intensity are continuous variables. We then extend and generalize this formulation to an iterative algorithm, called additive PSL (APSL), for sparse parametric image reconstruction. A set of simulated source search scenarios using a single non-directional detector are considered, finding improved image accuracy and computational efficiency with APSL over traditional grid-based approaches.
引用
收藏
页码:2088 / 2099
页数:12
相关论文
共 36 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] [Anonymous], P IEEE NUCL SCI S ME
  • [3] Routine Surveys for Gamma-Ray Background Characterization
    Aucott, Timothy J.
    Bandstra, Mark S.
    Negut, Victor
    Chivers, Daniel H.
    Cooper, Reynold J.
    Vetter, Kai
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2013, 60 (02) : 1147 - 1150
  • [4] Maximum Likelihood Localization of Radioactive Sources Against a Highly Fluctuating Background
    Bai, Er-wei
    Heifetz, Alexander
    Raptis, Paul
    Dasgupta, Soura
    Mudumbai, Raghuraman
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (06) : 3274 - 3282
  • [5] Simultaneous localization and mapping (SLAM): Part II
    Bailey, Tim
    Durrant-Whyte, Hugh
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (03) : 108 - 117
  • [6] Scene data fusion: Real-time standoff volumetric gamma-ray imaging
    Barnowski, Ross
    Haefner, Andrew
    Mihailescu, Lucian
    Vetter, Kai
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 800 : 65 - 69
  • [7] Bhattacharyya U, 2018, 2018 IEEE 8TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), P8, DOI 10.1109/CCWC.2018.8301642
  • [8] Non-negative Matrix Factorization of Gamma-Ray Spectra for Background Modeling, Detection, and Source Identification
    Bilton, K. J.
    Joshi, T. H.
    Bandstra, M. S.
    Curtis, J. C.
    Quiter, B. J.
    Cooper, R. J.
    Vetter, K.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (05) : 827 - 837
  • [9] THE ALTERNATING DESCENT CONDITIONAL GRADIENT METHOD FOR SPARSE INVERSE PROBLEMS
    Boyd, Nicholas
    Schiebinger, Geoffrey
    Recht, Benjamin
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 616 - 639
  • [10] Likelihood maximization for list-mode emission tomographic image reconstruction
    Byrne, C
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (10) : 1084 - 1092