Non-Travelling Wave Solutions of the (2+1)-Dimensional Dispersive Long Wave System

被引:0
作者
Hassan, Mamdouh M. [1 ]
机构
[1] Menia Univ, Fac Sci, Dept Math, El Minia, Egypt
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2009年 / 64卷 / 9-10期
关键词
Extended F-Expansion Method; Exact Solutions; (2+1)-Dimensional Dispersive Long Wave System; Soliton-Like Solution; Jacobi Elliptic Function Solutions; F-EXPANSION METHOD; NONLINEAR EVOLUTION-EQUATIONS; ELLIPTIC-FUNCTION-METHOD; SOLITON-LIKE SOLUTIONS; COUPLED KDV EQUATIONS; PERIODIC-SOLUTIONS; VARIABLE-COEFFICIENTS; MATHEMATICAL PHYSICS; SYMBOLIC COMPUTATION; 2+1 DIMENSIONS;
D O I
10.1515/zna-2009-9-1002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the aid of symbolic computation and the extended F-expansion method, we construct more general types of exact non-travelling wave solutions of the (2+1)-dimensional dispersive long wave system. These solutions include single and combined Jacobi elliptic function solutions, rational solutions, hyperbolic function solutions, and trigonometric function solutions.
引用
收藏
页码:540 / 552
页数:13
相关论文
共 50 条
[21]   Symbolic Computation Study of (2+1)-Dimensional Dispersive Long Wave Equations [J].
LU ZhuoSheng and XIE FuDing School of Science Beijing University of Post and Telecommunications Beijing China Key Laboratory of Mathematics Mechanization Academy of Mathematics and System Sciences the Chinese Academy of Sciences Beijing China Department of Computer Science Liaoning Normal University Dalian China .
Communications in Theoretical Physics, 2006, 46 (08) :199-202
[22]   Solitary and periodic wave solutions of (2+1)-dimensions of dispersive long wave equations on shallow waters [J].
Gaber, A. A. .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2021, 6 (03) :292-298
[23]   The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system [J].
Li, DS ;
Zhang, HQ ;
Hong-, Z .
CHINESE PHYSICS, 2004, 13 (07) :984-987
[24]   Travelling wave solutions for a CBS equation in 2+1 dimensions [J].
Luz Gandarias, Maria ;
Santos Bruzon, Maria .
RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, :153-+
[25]   SOLITONS AND LOCALIZED EXCITATIONS FOR THE (2+1)-DIMENSIONAL DISPERSIVE LONG WAVE SYSTEM VIA SYMBOLIC COMPUTATION [J].
Xue, Yu-Shan ;
Li, Li-Li ;
Meng, Xiang-Hua ;
Xu, Tao ;
Lue, Xing ;
Liu, Wen-Jun ;
Tian, Bo .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (18) :3529-3541
[26]   New Families of Rational Form Variable Separation Solutions to(2+1)-Dimensional Dispersive Long Wave Equations [J].
WEN XiaoYong Department of MathematicsCollege of SciencesBeijing Information Science and Technology UniversityBeijing China .
CommunicationsinTheoreticalPhysics, 2009, 51 (05) :789-793
[27]   Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations [J].
Kumar, Sachin ;
Kumar, Amit ;
Kharbanda, Harsha .
PHYSICA SCRIPTA, 2020, 95 (06)
[28]   New Families of Rational Form Variable Separation Solutions to (2+1)-Dimensional Dispersive Long Wave Equations [J].
Wen Xiao-Yong .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) :789-793
[29]   Travelling wave solutions of (2+1)-dimensional generalised time-fractional Hirota equation [J].
Zhang, Youwei .
PRAMANA-JOURNAL OF PHYSICS, 2018, 90 (03)
[30]   Multiple soliton solutions and fusion interaction phenomena for the (2+1)-dimensional modified dispersive water-wave system [J].
Wen, Xiao-Yong ;
Xu, Xiao-Ge .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) :7730-7740