The eigenvalue distribution of a random unipotent matrix in its representation on lines

被引:2
|
作者
Fulman, J [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
random matrix; symmetric functions; Hall-Littlewood polynomial;
D O I
10.1006/jabr.1999.8278
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eigenvalue distribution of a uniformly chosen random finite unipotent matrix in its permutation action on lines is studied. We obtain bounds for the mean number of eigenvalues lying in a fixed are of the unit circle and offer an approach to other asymptotics. For the case of all unipotent matrices, the proof gives a probabilistic interpretation to identities of Macdonald from symmetric function theory. For the case of upper triangular matrices over a finite held, connections between symmetric function theory and a probabilistic growth algorithm of Borodin and Kirillov emerge. (C) 2000 Academic Press.
引用
收藏
页码:497 / 511
页数:15
相关论文
共 50 条
  • [1] RANDOM WALK ON UNIPOTENT MATRIX GROUPS
    Diaconis, Persi
    Hough, Robert
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (03): : 587 - 625
  • [2] THE DISTRIBUTION AND MOMENTS OF THE SMALLEST EIGENVALUE OF A RANDOM MATRIX OF WISHART TYPE
    EDELMAN, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 159 : 55 - 80
  • [3] ABSOLUTE CONTINUITY OF THE LIMITING EIGENVALUE DISTRIBUTION OF THE RANDOM TOEPLITZ MATRIX
    Sen, Arnab
    Virag, Balint
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 706 - 711
  • [4] Smallest Dirac eigenvalue distribution from random matrix theory
    Nishigaki, SM
    Damgaard, PH
    Wettig, T
    PHYSICAL REVIEW D, 1998, 58 (08)
  • [5] LOWEST EIGENVALUE OF A RANDOM MATRIX
    ANTOUN, JT
    GRUNBAUM, FA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 38 (01) : 168 - 174
  • [6] ISOLATED EIGENVALUE OF RANDOM MATRIX
    LANG, DW
    PHYSICAL REVIEW B, 1964, 135 (4B) : 1082 - +
  • [7] Random Matrix Theory for Modeling the Eigenvalue Distribution of Images Under Upscaling
    Vazquez-Padin, David
    Perez-Gonzalez, Fernando
    Comesana-Alfaro, Pedro
    DIGITAL COMMUNICATION: TOWARDS A SMART AND SECURE FUTURE INTERNET, TIWDC 2017, 2017, 766 : 109 - 124
  • [8] DISTRIBUTION OF THE LARGEST EIGENVALUE OF AN ELLIPTICAL WISHART MATRIX AND ITS SIMULATION
    Shinozaki, Aya
    Hashiguchi, Hiroki
    Iwashita, Toshiya
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2018, 30 (02): : 1 - 12
  • [9] A new joint eigenvalue distribution of finite random matrix for cognitive radio networks
    Zhang, Wensheng
    Sun, Jian
    Xiong, Hailiang
    Chen, Di
    IET COMMUNICATIONS, 2016, 10 (13) : 1584 - 1589
  • [10] A RANDOM MATRIX MODEL WHOSE EIGENVALUE SPACINGS ARE CLOSELY DESCRIBED BY THE BRODY DISTRIBUTION
    Nieminen, John M.
    Muche, Lutz
    ACTA PHYSICA POLONICA B, 2017, 48 (04): : 765 - 772