Intersection numbers in the curve graph with a uniform constant

被引:3
作者
Watanabe, Yohsuke [1 ]
机构
[1] Univ Hawaii Manoa, Dept Math, 2565 McCarthy Mall, Honolulu, HI 96822 USA
基金
美国国家科学基金会;
关键词
Curve complex; Intersection numbers; COMPLEX;
D O I
10.1016/j.topol.2016.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive various inequalities involving the intersection number of the curves contained in geodesics and tight geodesics in the curve graph. While there already exist such inequalities on tight geodesics, our method applies in the setting of geodesics. Furthermore, the method gives inequalities with a uniform constant depending only on the topology of the surface. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 6 条
  • [1] Comparison between Teichmuller and Lipschitz metrics
    Choi, Young-Eun
    Rafi, Kasra
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 739 - 756
  • [2] HARVEY WJ, 1981, ANN MATH STUD, P245
  • [3] Geometry of the complex of curves II: Hierarchical structure
    Masur, HA
    Minsky, YN
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) : 902 - 974
  • [4] Tightness and computing distances in the curve complex
    Shackleton, Kenneth J.
    [J]. GEOMETRIAE DEDICATA, 2012, 160 (01) : 243 - 259
  • [5] Watanabe Y., ARXIV14073321
  • [6] Webb R.C.H., J REINE ANGEW MATH