First-principles study of Hf/Nb/Zr-doped MAX phases Ti3AlC2 and Ti3SiC2

被引:13
|
作者
Nie, Jinlan [1 ]
Liu, Sishuo [1 ]
Zhan, Xiaofei [1 ]
Ao, Lei [1 ]
Li, Li [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX phases; Doping; Magnetism; Mechanical and thermal properties; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; CARBIDE; TEMPERATURE; STABILITY; CERAMICS; DEFECTS; NUCLEAR; ZR; SI;
D O I
10.1016/j.physb.2019.06.052
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The effects of doping Hf/Nb/Zr on the structural, electronic, magnetic, mechanical, and thermal properties of Ti3AlC2 and Ti3SiC2 are investigated based on the density functional theory (DFT). Our calculations show that magnetism can be induced in Ti3AlC2 by doping Hf/Zr at c-ATi2 site due to the electron transfer. Doping Hf/Nb/Zr at the Ti1 site has minimal effect on the intrinsic mechanical properties of Ti3AlC2 and Ti3SiC2, in according with the previous experiment. Whereas doping Hf/Nb/Zr at the interstitial site has adverse effects on the host material, resulting in significantly decreased bulk, shear, Young's moduli and Debye temperature.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [1] First-Principles Study of Vacancies in Ti3SiC2 and Ti3AlC2
    Wang, Hui
    Han, Han
    Yin, Gen
    Wang, Chang-Ying
    Hou, Yu-Yang
    Tang, Jun
    Dai, Jian-Xing
    Ren, Cui-Lan
    Zhang, Wei
    Huai, Ping
    MATERIALS, 2017, 10 (02)
  • [2] First-principles calculations of Ti3SiC2 and Ti3AlC2 with hydrogen interstitial
    Xu, Canhui
    Zhang, Haibin
    Hu, Shuanglin
    Zhou, Xiaosong
    Peng, Shuming
    Xiao, Haiyan
    Zhang, Guojun
    JOURNAL OF NUCLEAR MATERIALS, 2017, 488 : 261 - 266
  • [3] Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases
    Plummer, Gabriel
    Tucker, Garritt J.
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [4] Irradiation resistance of MAX phases Ti3SiC2 and Ti3AlC2: Characterization and comparison
    Huang, Qing
    Liu, Renduo
    Lei, Guanhong
    Huang, Hefei
    Li, Jianjian
    He, Suixia
    Li, Dehui
    Yan, Long
    Zhou, Jie
    Huang, Qing
    JOURNAL OF NUCLEAR MATERIALS, 2015, 465 : 640 - 647
  • [5] Accommodation, Accumulation, and Migration of Defects in Ti3SiC2 and Ti3AlC2 MAX Phases
    Middleburgh, Simon C.
    Lumpkin, Greg R.
    Riley, Daniel
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (10) : 3196 - 3201
  • [6] Thermopower of the 312 MAX phases Ti3SiC2, Ti3GeC2, and Ti3AlC2
    Chaput, L.
    Hug, G.
    Pecheur, P.
    Scherrer, H.
    PHYSICAL REVIEW B, 2007, 75 (03)
  • [7] First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2
    Togo, Atsushi
    Chaput, Laurent
    Tanaka, Isao
    Hug, Gilles
    PHYSICAL REVIEW B, 2010, 81 (17):
  • [8] First-principles study of hydrogen incorporation into the MAX phase Ti3AlC2
    Ding, Haimin
    Glandut, Nicolas
    Fan, Xiaoliang
    Liu, Qing
    Shi, Yu
    Jie, Jinchuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (15) : 6387 - 6393
  • [9] Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions
    Ward, Joseph
    Bowden, David
    Prestat, Eric
    Holdsworth, Sam
    Stewart, David
    Barsoum, Michel W.
    Preuss, Michael
    Frankel, Philipp
    CORROSION SCIENCE, 2018, 139 : 444 - 453
  • [10] Direct diffusion bonding of Ti3SiC2 and Ti3AlC2
    Yin, Xiaohui
    Li, Meishuan
    Xu, Jingjun
    Zhang, Jie
    Zhou, Yanchun
    MATERIALS RESEARCH BULLETIN, 2009, 44 (06) : 1379 - 1384