Continuous-variable quantum repeater based on quantum scissors and mode multiplexing

被引:28
作者
Seshadreesan, Kaushik P. [1 ]
Krovi, Hari [2 ]
Guha, Saikat [1 ]
机构
[1] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[2] Raytheon BBN Technol, Quantum Engn & Comp Phys Sci & Syst, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 01期
关键词
COMMUNICATION; CAPACITIES; KEY;
D O I
10.1103/PhysRevResearch.2.013310
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (DV) single-photon-based quantum communications. Continuous-variable (CV) encodings over the quadrature degrees of freedom of the electromagnetic field mode offer an attractive alternative. For example, CV transmission systems are easier to integrate with existing optical telecom systems compared to their DV counterparts. Yet, repeaters for CV quantum communications have remained elusive. We present a quantum repeater scheme for CV entanglement distribution over a lossy bosonic channel that beats the direct transmission exponential rate-loss tradeoff. The scheme involves repeater nodes consisting of (a) two-mode squeezed vacuum (TMSV) CV entanglement sources; (b) the quantum scissors operation to perform nondeterministic noiseless linear amplification of lossy TMSV states; (c) a layer of switched mode multiplexing inspired by second-generation DV repeaters, which is the key ingredient apart from probabilistic entanglement purification that makes DV repeaters work; and (d) a non-Gaussian entanglement swap operation. We report our exact results on the rate-loss envelope achieved by the scheme.
引用
收藏
页数:12
相关论文
共 57 条
[1]   Multimode quantum memory based on atomic frequency combs [J].
Afzelius, Mikael ;
Simon, Christoph ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
PHYSICAL REVIEW A, 2009, 79 (05)
[2]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Theoretical analysis of an ideal noiseless linear amplifier for Einstein-Podolsky-Rosen entanglement distillation [J].
Bernu, J. ;
Armstrong, S. ;
Symul, T. ;
Ralph, T. C. ;
Lam, P. K. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (21)
[5]   Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier [J].
Blandino, Remi ;
Leverrier, Anthony ;
Barbieri, Marco ;
Etesse, Jean ;
Grangier, Philippe ;
Tualle-Brouri, Rosa .
PHYSICAL REVIEW A, 2012, 86 (01)
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   Driving non-Gaussian to Gaussian states with linear optics [J].
Browne, DE ;
Eisert, J ;
Scheel, S ;
Plenio, MB .
PHYSICAL REVIEW A, 2003, 67 (06) :9
[8]  
Buhrman H, 2003, LECT NOTES COMPUT SC, V2747, P1
[9]   Distributed Measurement-based Quantum Computation [J].
Danos, Vincent ;
D'Hondt, Ellie ;
Kashefi, Elham ;
Panangaden, Prakash .
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 170 :73-94
[10]   Distillation of secret key and entanglement from quantum states [J].
Devetak, I ;
Winter, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2053) :207-235