Global small analytic solutions of MHD boundary layer equations

被引:22
作者
Liu, Ning [1 ]
Zhang, Ping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
MHD Prandtl system; Littlewood-Paley theory; Analytic energy estimate; NAVIER-STOKES EQUATION; WELL-POSEDNESS; PRANDTL EQUATIONS; ILL-POSEDNESS; SOBOLEV SPACES; EXISTENCE; REGULARITY; SYSTEM; FLOW;
D O I
10.1016/j.jde.2021.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the global existence and the large time decay estimate of solutions to the two-dimensional MHD boundary layer equations with small initial data, which is analytical in the tangential variable. The main idea of the proof is motivated by that of [28]. The additional difficulties are: 1. There appears the magnetic field; 2. The far field here depends on the tangential variable; 3. The Reynolds number is different from magnetic Reynolds number. In particular, we solved an open question in [33] concerning the large time existence of analytical solutions to the MHD boundary layer equations. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 257
页数:59
相关论文
共 34 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Chemin J-Y., 2004, ACTES JOURNEES MATH
[5]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[6]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012
[7]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[8]   Controllability of the Navier-Stokes Equation in a Rectangle with a Little Help of a Distributed Phantom Force [J].
Coron, Jean-Michel ;
Marbach, Frederic ;
Sueur, Franck ;
Zhang, Ping .
ANNALS OF PDE, 2019, 5 (02)
[9]  
Cowling T. G., 1957, MAGNETOHYDRODYNAMICS, V4
[10]  
Davidson P.A., 2002, An Introduction to Magnetohydrodynamics