Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries

被引:101
|
作者
Von Lim, Yew [1 ]
Wang, Ye [1 ]
Kong, Dezhi [1 ]
Guo, Lu [1 ]
Wong, Jen It [2 ]
Ang, L. K. [1 ]
Yang, Hui Ying [1 ]
机构
[1] Singapore Univ Technol & Design, Pillar Engn Prod Dev, 8 Somapah Rd, Singapore 487372, Singapore
[2] JEOL Asia Pte Ltd, 2 Corp Rd,01-12, Singapore 618494, Singapore
基金
新加坡国家研究基金会;
关键词
METAL-ORGANIC FRAMEWORK; ANODE MATERIALS; ENERGY-STORAGE; NA-ION; LI-ION; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; POROUS CARBON; HIGH-CAPACITY; LITHIUM;
D O I
10.1039/c7ta01821e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the cost-effectiveness of sodium sources, sodium-ion based electrochemical energy storage devices still have a few challenges in competing with lithium-ion based batteries (LIBs) for commercialization and practical applications. In particular, the high rate performance and long cycling lifetimes are very difficult to be achieved in sodium-ion batteries (SIBs). Herein, we report a simple solvothermal method to prepare cubic-shaped nanostructures with vertical rose petal-like layers, which are used as anode materials in SIBs. The well-designed WS2@NC structures consist of WS2 nanosheets and Prussian blue-derived nitrogen doped carbon nanocubic framework, which possess unique 2D WS2 nanosheets and are vertically grown on the well-defined 3D porous carbon hierarchical structures. As anode materials for SIBs, this structure displayed high rate capacity at 384 and 151 mA h g(-1) at 100 and 5000 mA g(-1), respectively. More importantly, the performance of the electrode materials can be maintained at more than 200 cycles with coulombic efficiency not less than 99%. The excellent electrochemical performance is attributed to the synergistic effect of the composites that enhances the electrochemical transport properties of the WS2 due to the well-defined, nano-structured hierarchical scaffolding and the highly conductive nature of the framework. From the results shown, this unique design method provides unexplored insights into new and simple methods in improving the electrochemical performance of the 2D-TMDs based SIBs electrode materials.
引用
收藏
页码:10406 / 10415
页数:10
相关论文
共 50 条
  • [1] Nitrogen-Doped Carbon Coated WS2 Nanosheets as Anode for High-Performance Sodium-Ion Batteries
    Liu, Yong
    Wei, Huijie
    Wang, Chao
    Wang, Fei
    Wang, Haichao
    Zhang, Wanhong
    Wang, Xianfu
    Yan, Chenglin
    Kim, Bok H.
    Ren, Fengzhang
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [2] Iron-cobalt phosphide/nitrogen-doped carbon composite derived from prussian blue analogues as anode materials for sodium-ion batteries
    Liu, Shuling
    Qin, Zhipeng
    Guo, Jiale
    Guo, Shaofeng
    Zhou, Zixiang
    Shi, Qiangqiang
    Zhang, Yakun
    Chang, Zelei
    Geng, Min
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [3] WS2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Kang, Hongyan
    Shang, Minghui
    Jiao, Lifang
    Chen, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (33) : 11878 - 11884
  • [4] A nitrogen-doped three-dimensional carbon framework for high performance sodium ion batteries
    Wang, Ying
    Wang, Caiyun
    Guo, Huinan
    Wang, Yijing
    Huang, Zhenguo
    RSC ADVANCES, 2017, 7 (03): : 1588 - 1592
  • [5] Synthesis of nitrogen-doped porous carbon nanofibers as an anode material for high performance sodium-ion batteries
    Qu, Yaohui
    Guo, Manman
    Zeng, Fanyan
    Zou, Chengwu
    Yuan, Cailei
    Zhang, Xiahui
    Li, Qiang
    Lu, Hai
    SOLID STATE IONICS, 2019, 337 : 170 - 177
  • [6] Heteroatom‐doped nanoporous carbon with high rate performance as anode for sodium-ion batteries
    Yanshuang Meng
    Renpeng Lin
    Mingtao Duan
    Mengqi Du
    Hongshuai Zhang
    Guofeng Ren
    Fuliang Zhu
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 8295 - 8303
  • [7] Nitrogen-Doped Hollow Carbon Nanospheres Derived from Dopamine as High-Performance Anode Materials for Sodium-Ion Batteries
    Yang, Yurong
    Qiu, Min
    Liu, Li
    Su, Dan
    Pi, Yanmei
    Yan, Guomin
    NANO, 2016, 11 (11)
  • [8] Synthesis of Hierarchically Porous Nitrogen-Doped Carbon for Sodium-Ion Batteries
    Liu, Yang
    Gao, Zhiqiang
    CHEMELECTROCHEM, 2017, 4 (05): : 1059 - 1065
  • [9] Optimizing nitrogen-doped bamboo-derived hard carbon as anodes of sodium-ion batteries
    Wang, J. D.
    Kuai, J.
    Xie, J.
    Qiu, T.
    Wang, J.
    Li, A. L.
    Liu, F.
    Cheng, J. P.
    DIAMOND AND RELATED MATERIALS, 2025, 153
  • [10] Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries
    Qu, Yaohui
    Guo, Manman
    Wang, Xiwen
    Yuan, Cailei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 874 - 882