On the Fedosov deformation quantization beyond the regular Poisson manifolds

被引:5
作者
Dolgushev, VA [1 ]
Isaev, AP
Lyakhovich, SL
Sharapov, AA
机构
[1] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
[3] Max Planck Inst Math, D-53111 Bonn, Germany
[4] Chalmers Univ Technol, Dept Theoret Phys, S-41296 Gothenburg, Sweden
[5] Tomsk VV Kuibyshev State Univ, Dept Theoret Phys, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
deformation quantization; quantum groups;
D O I
10.1016/S0550-3213(02)00763-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:457 / 476
页数:20
相关论文
共 29 条
  • [11] Coll V.E., 1989, ISRAEL MATH C P, V1, P396
  • [12] Wick type deformation quantization of Fedosov manifolds
    Dolgushev, VA
    Lyakhovich, SL
    Sharapov, AA
    [J]. NUCLEAR PHYSICS B, 2001, 606 (03) : 647 - 672
  • [13] DRINFELD VG, 1983, SOV MATH DOKL, V28, P667
  • [14] FADDEEV LD, 1989, ALGEBR ANAL, V1, P178
  • [15] Fedosov B., 1996, MATH TOPICS, V9
  • [16] A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION
    FEDOSOV, BV
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) : 213 - 238
  • [17] GIAQUINTO A, HEPTH9411140
  • [18] Fedosov deformation quantization as a BRST theory
    Grigoriev, MA
    Lyakhovich, SL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) : 437 - 457
  • [19] KARABEGOV A, MATHQA0102169
  • [20] KARASEV MV, 1993, NONLINEAR POSSON BRA