Quantifying Surface Reflectivity for Spaceborne Lidar via Two Independent Methods

被引:38
作者
Disney, Mathias I. [1 ]
Lewis, Philip E. [1 ]
Bouvet, Marc [2 ]
Prieto-Blanco, Ana [1 ]
Hancock, Steven [3 ,4 ]
机构
[1] UCL, Dept Geog, London WC1E 6BT, England
[2] European Space Agcy, European Space Res & Technol Ctr, Wave Interact & Propagat Sect, NL-2200 AG Noordwijk, Netherlands
[3] UCL, Dept Civil Environm & Geomat Engn, Dept Geog, London WC1E 6BT, England
[4] UCL, Dept Space & Climat Phys, London WC1E 6BT, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2009年 / 47卷 / 09期
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
Bidirectional reflectance distribution function (BRDF); hotspot; lidar; radiative transfer; 3-D modeling; BIDIRECTIONAL REFLECTANCE; OPTICAL-PROPERTIES; AVHRR DATA; ALGORITHM; ALBEDO; MODEL; MODIS; SCATTERING; LAND;
D O I
10.1109/TGRS.2009.2019268
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spaceborne differential absorption lidar has been proposed for accurate measurements of atmospheric CO2 (and surface properties). Lidar instruments typically observe the highest possible surface reflectance due to observing in the retroreflection direction (the so-called "hotspot") where viewed shadow is minimized. The range of observed reflectance will determine instrument dimensions and signal-to-noise ratio, but it is difficult to predict this range globally a priori. Two complementary methods are presented for estimating lidar reflectivity over a range of vegetated surface types. The first method simulates the expected response of a lidar instrument from multiangle multispectral reflectance data. The second method uses detailed 3-D vegetation structural models and Monte Carlo ray tracing to simulate the lidar signal. The simulations are used to validate the first method and assess the impact of possible instrument configurations. Both methods agree well and are robust to error in observations, with predicted lidar reflectivity (at 1570 and 2050 nm here) typically between 10% and 33% higher relative to off-nadir reflectance and ranging from 0.02 to similar to 0.7. We use the 3-D simulations to show that the impact of shifted on-off lidar pulses is not likely to be significant for accuracy of retrieved CO2, and we demonstrate that the 3-D simulation method is a flexible and powerful way of prototyping future spaceborne lidar missions.
引用
收藏
页码:3262 / 3271
页数:10
相关论文
共 32 条
  • [1] [Anonymous], 2004, J GEOPHYS RES ATMOS, DOI DOI 10.1029/2003JD004252
  • [2] [Anonymous], EUR16095EN EUR COMM
  • [3] Variability of biome reflectance directional signatures as seen by POLDER
    Bacour, C
    Bréon, FM
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 98 (01) : 80 - 95
  • [4] BOGREKCI I, 2004, P 7 INT C PREC AGR
  • [5] Differential absorption lidar (DIAL) measurements from air and space
    Browell, EV
    Ismail, S
    Grant, WB
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 1998, 67 (04): : 399 - 410
  • [6] Multiple scattering and lidar returns
    Bruscaglioni, P
    Flesia, C
    Ismaelli, A
    Sansoni, P
    [J]. PURE AND APPLIED OPTICS, 1998, 7 (06): : 1273 - 1287
  • [7] The orbiting carbon observatory (OCO) mission
    Crisp, D
    Atlas, RM
    Breon, FM
    Brown, LR
    Burrows, JP
    Ciais, P
    Connor, BJ
    Doney, SC
    Fung, IY
    Jacob, DJ
    Miller, CE
    O'Brien, D
    Pawson, S
    Randerson, JT
    Rayner, P
    Salawitch, RJ
    Sander, SP
    Sen, B
    Stephens, GL
    Tans, PP
    Toon, GC
    Wennberg, PO
    Wofsy, SC
    Yung, YL
    Kuang, ZM
    Chudasama, B
    Sprague, G
    Weiss, B
    Pollock, R
    Kenyon, D
    Schroll, S
    [J]. TRACE CONSTITUENTS IN THE TROPOSPHERE AND LOWER STRATOSPHERE, 2004, 34 (04): : 700 - 709
  • [8] 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains
    Disney, M
    Lewis, P
    Saich, P
    [J]. REMOTE SENSING OF ENVIRONMENT, 2006, 100 (01) : 114 - 132
  • [9] Disney M., 2000, REMOTE SENS REV, V18, P163, DOI [DOI 10.1080/02757250009532389, 10 . 1080 / 02757250009532389]
  • [10] ENGELSEN O, 1996, EUR16426EN EC JOINT