On periodic orbits of polynomial relay systems

被引:0
|
作者
Jacquemard, Alain [1 ]
Pereira, Weber Flavio
机构
[1] Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, Dijon, France
[2] Univ Estadual Campinas, Inst Matemat & Estatist, Campinas, SP, Brazil
关键词
discontinuous differential equations; periodic orbits; semi-algebraic sets;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm which determines global conditions for a class of discontinuous vector fields in 4D (called polynomial relay systems) to have periodic orbits. We present explicit results relying on constructive proofs, which involve classical Effective Algebraic Geometry algorithms.
引用
收藏
页码:331 / 347
页数:17
相关论文
共 50 条
  • [31] Constraint Based Computation of Periodic Orbits of Chaotic Dynamical Systems
    Goldsztejn, Alexandre
    Granvilliers, Laurent
    Jermann, Christophe
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2013, 2013, 8124 : 774 - 789
  • [32] Periodic Orbits for Planar Piecewise Smooth Systems with a Line of Discontinuity
    L. Dieci
    C. Elia
    Journal of Dynamics and Differential Equations, 2014, 26 : 1049 - 1078
  • [33] Systematic Computer Assisted Proofs of periodic orbits of Hamiltonian systems
    Barrio, Roberto
    Rodriguez, Marcos
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2660 - 2675
  • [34] Existence of periodic orbits for planar differential systems with delay angle
    Liang, Haihua
    Huang, Jianfeng
    Zhao, Yulin
    APPLIED MATHEMATICS LETTERS, 2022, 133
  • [35] Existence of periodic orbits for high-dimensional autonomous systems
    Sanchez, Luis A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (02) : 409 - 418
  • [36] On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems
    Skokos, C
    PHYSICA D, 2001, 159 (3-4): : 155 - 179
  • [37] Linear instability of periodic orbits of free period Lagrangian systems
    Portaluri, Alessandro
    Wu, Li
    Yang, Ran
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2833 - 2859
  • [38] On the Number of Periodic Orbits to Odd Order Differential Delay Systems
    Ge, Weigao
    Li, Lin
    MATHEMATICS, 2020, 8 (10) : 1 - 19
  • [39] Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems
    Net, M.
    Sanchez, J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (02): : 674 - 698
  • [40] ON THE EXISTENCE OF PERIODIC ORBITS FOR MAGNETIC SYSTEMS ON THE TWO-SPHERE
    Benedetti, Gabriele
    Zehmisch, Kai
    JOURNAL OF MODERN DYNAMICS, 2015, 9 : 141 - 146