On periodic orbits of polynomial relay systems

被引:0
|
作者
Jacquemard, Alain [1 ]
Pereira, Weber Flavio
机构
[1] Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, Dijon, France
[2] Univ Estadual Campinas, Inst Matemat & Estatist, Campinas, SP, Brazil
关键词
discontinuous differential equations; periodic orbits; semi-algebraic sets;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm which determines global conditions for a class of discontinuous vector fields in 4D (called polynomial relay systems) to have periodic orbits. We present explicit results relying on constructive proofs, which involve classical Effective Algebraic Geometry algorithms.
引用
收藏
页码:331 / 347
页数:17
相关论文
共 50 条
  • [1] A GENERAL FRAMEWORK FOR VALIDATED CONTINUATION OF PERIODIC ORBITS IN SYSTEMS OF POLYNOMIAL ODES
    van den Berg, Jan Bouwe
    Queirolo, Elena
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2021, 8 (01): : 59 - 97
  • [2] Localization of periodic orbits of polynomial Sprott systems with one or two quadratic monomials
    Starkov, KE
    Coria, L
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (03) : 271 - 277
  • [3] Periodic orbits in gravitational systems
    Hadjedemetriou, John D.
    Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, 2006, 227 : 43 - 79
  • [4] Finding unstable periodic orbits: A hybrid approach with polynomial optimization
    Lakshmi, Mayur V.
    Fantuzzi, Giovanni
    Chernyshenko, Sergei I.
    lasagna, DaviDe
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 427 (427)
  • [5] Periodic orbits on discrete dynamical systems
    Zhou, Z
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (6-9) : 1155 - 1161
  • [6] Bifurcation of periodic orbits in discontinuous systems
    Hosham, Hany A.
    NONLINEAR DYNAMICS, 2017, 87 (01) : 135 - 148
  • [7] Periodic orbits and escapes in dynamical systems
    George Contopoulos
    Mirella Harsoula
    Georgios Lukes-Gerakopoulos
    Celestial Mechanics and Dynamical Astronomy, 2012, 113 : 255 - 278
  • [8] Bifurcation of periodic orbits in discontinuous systems
    Hany A. Hosham
    Nonlinear Dynamics, 2017, 87 : 135 - 148
  • [9] Resonant periodic orbits in the exoplanetary systems
    Antoniadou, K. I.
    Voyatzis, G.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 657 - 676
  • [10] Resonant periodic orbits in the exoplanetary systems
    K. I. Antoniadou
    G. Voyatzis
    Astrophysics and Space Science, 2014, 349 : 657 - 676