A Stern-type congruence for the Schroder numbers

被引:4
作者
Cao, Hui-Qin [1 ]
Pan, Hao [2 ]
机构
[1] Nanjing Audit Univ, Dept Appl Math, Nanjing 211815, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; Schroder number; MOTZKIN NUMBERS; MODULO POWERS; CATALAN;
D O I
10.1016/j.disc.2016.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Schroder number S, counts the number of the lattice paths from (0, 0) to (n, n), containing no point above the line y = x and using only steps (1, 0), (0, 1) and (1, 1). We prove that Sn+2 alpha+1 equivalent to S-n + 2(alpha+1) (mod 2(alpha+2)), where n >= 1 and alpha >= 1. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:708 / 712
页数:5
相关论文
共 14 条