Describing the COVID-19 outbreak during the lockdown: fitting modified SIR models to data

被引:19
作者
Ianni, Aldo [1 ]
Rossi, Nicola [1 ]
机构
[1] INFN, Lab Nazl Gran Sasso, Via Acitelli 22, I-67100 Assergi, Italy
关键词
D O I
10.1140/epjp/s13360-020-00895-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we analyse the COVID-19 outbreak data with simple modifications of the SIR compartmental model, in order to understand the time evolution of the cases in Italy and Germany, during the first half of 2020. Even if the complexity of the pandemic cannot be easily described, we show that our models are suitable for understanding the data during the application of the social distancing and the lockdown. We compare and contrast different modifications of the SIR model showing the strengths and the weaknesses of each approach. Finally, we discuss the reliability of the model predictions for estimating the near- and far-future evolution of the outbreak.
引用
收藏
页数:10
相关论文
共 10 条
  • [1] Modeling and Prediction of the Covid-19 Cases With Deep Assessment Methodology and Fractional Calculus
    Karacuha, Ertugrul
    Onal, Nisa Ozge
    Ergun, Esra
    Tabatadze, Vasil
    Alkas, Hasan
    Karacuha, Kamil
    Tontus, Haci Omer
    Nu, Nguyen Vinh Ngoc
    [J]. IEEE ACCESS, 2020, 8 : 164012 - 164034
  • [2] MINUIT - SYSTEM FOR FUNCTION MINIMIZATION AND ANALYSIS OF PARAMETER ERRORS AND CORRELATIONS
    JAMES, F
    ROOS, M
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1975, 10 (06) : 343 - 367
  • [3] Contribution to the mathematical theory of epidemics
    Kermack, WO
    McKendrick, AG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) : 700 - 721
  • [4] Kutta Wilhelm, 1901, Z MATH PHYS, V46, P435
  • [5] Lavezzo E, 2020, Nature, DOI [10.1101/2020.04.17.20053157v1, DOI 10.1101/2020.04.17.20053157, 10.1101/2020. 04.17.20053157.]
  • [6] Roe B.R., 2001, PROBABILITY STAT EXP, DOI [10.1007/978-1-4684-9296-5, DOI 10.1007/978-1-4684-9296-5]
  • [7] Runge C., 1895, Mathematische Annalen, DOI [DOI 10.1007/BF01446807, 10.1007/BF01446807]
  • [8] TABLE FOR ESTIMATING THE GOODNESS OF FIT OF EMPIRICAL DISTRIBUTIONS
    SMIRNOV, N
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1948, 19 (02): : 279 - 279
  • [9] Steel R.G.D., 1980, Principles and Procedures of Statistics, DOI DOI 10.1002/BIN:1119620010313
  • [10] van Doremalen N, 2020, NEW ENGL J MED, V382, P1564, DOI [10.1101/2020.03.09.20033217, 10.1056/NEJMc2004973]