Anomaly Detection using 1D Convolutional Neural Networks for Surface Enhanced Raman Scattering

被引:15
|
作者
Mozaffari, M. Hamed [1 ]
Tay, Li-Lin [1 ]
机构
[1] Natl Res Council Canada, Metrol Res Ctr, Ottawa, ON, Canada
来源
SPIE FUTURE SENSING TECHNOLOGIES (2020) | 2020年 / 11525卷
关键词
Surface-enhanced Raman scattering; Convolutional neural networks; Raman spectroscopy; Anomaly detection; One-class classification; Deep learning; Pattern recognition; SPECTROSCOPY;
D O I
10.1117/12.2576447
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An accurate supervised classification technique requires a large training database with an equal number of samples in each category. However, in practice, data class imbalance is naturally inherent in detection and identification tasks. In an extreme case, one category of data has a majority of training samples (positive class), causing over-classifying. In these circumstances, the negative classes are either absent, poorly sampled or not well defined. Deep one-class classifiers are artificial neural networks developed to overfit the positive class samples. This unique situation constrains the network model to be trained data features just with the knowledge of the positive class. One well-known application of one-class classifiers is for anomaly detection problem, where the model stands out outliers. Recently, convolutional neural networks (CNNs) have outperformed previous machine learning methods in pattern recognition tasks. In this study, we proposed using a one-dimensional CNN model for anomaly detection in surface-enhanced Raman scattering (SERS) data acquired by portable Raman spectrometers. Raman spectroscopy technique has been widely adopted by first responders and military forces for the field analysis and identification of unknown hazardous materials. The performance and accuracy of the recognition method might compromise the success rate of an interrogation operation. Our experimental results revealed that a 1D CNN model could be used as a one-class classifier to distinguish anomalies in SERS data with a successful detection rate of 100 percent.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Hotspot Prediction Using 1D Convolutional Neural Network
    Syarifudin, Mohammad Anang
    Novitasari, Dian Candra Rini
    Marpaung, Faridawaty
    Wahyudi, Noor
    Hapsari, Dian Puspita
    Supriyati, Endang
    Farida, Yuniar
    Amin, Faris Muslihul
    Nugraheni, R. R. Diah
    Ilham
    Nariswari, Rinda
    Setiawan, Fajar
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 845 - 853
  • [32] Auto Evaluation for Essay Assessment Using a 1D Convolutional Neural Network
    Pasaribu, Novalanza Grecea
    Budiman, Gelar
    Irawati, Indrarini Dyah
    IEEE ACCESS, 2024, 12 : 188217 - 188230
  • [33] Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering
    Hassan, Manal
    Zhao, Yiping
    Zughaier, Susu M.
    BIOSENSORS-BASEL, 2024, 14 (08):
  • [34] Wheeze Detection Using Convolutional Neural Networks
    Kochetov, Kirill
    Putin, Evgeny
    Azizov, Svyatoslav
    Skorobogatov, Ilya
    Filchenkov, Andrey
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 162 - 173
  • [35] Structural Damage Detection in Real Time: Implementation of 1D Convolutional Neural Networks for SHM Applications
    Avci, Onur
    Abdeljaber, Osama
    Kiranyaz, Serkan
    Inman, Daniel
    STRUCTURAL HEALTH MONITORING & DAMAGE DETECTION, VOL 7, 2017, : 49 - 54
  • [36] Surface-Enhanced Raman Scattering Using 2D Materials
    de Sousa, Beatriz Pinto
    Fateixa, Sara
    Trindade, Tito
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (31)
  • [37] Anomaly detection in multi-tiered cellular networks using LSTM and 1D CNN
    Hasan Tahsin Oğuz
    Aykut Kalaycıoğlu
    EURASIP Journal on Wireless Communications and Networking, 2022
  • [38] Classification of skin cancer using convolutional neural networks analysis of Raman spectra
    Bratchenko, Ivan A.
    Bratchenko, Lyudmila A.
    Khristoforova, Yulia A.
    Moryatov, Alexander A.
    V. Kozlo, Sergey
    Zakharo, Valery P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 219
  • [39] Enhanced Network Anomaly Detection Based on Deep Neural Networks
    Naseer, Sheraz
    Saleem, Yasir
    Khalid, Shehzad
    Bashir, Muhammad Khawar
    Han, Jihun
    Iqbal, Muhammad Munwar
    Han, Kijun
    IEEE ACCESS, 2018, 6 : 48231 - 48246
  • [40] Channel Increment Strategy-Based 1D Convolutional Neural Networks for Seizure Prediction Using Intracranial EEG
    Wang, Xiaoshuang
    Zhang, Chi
    Karkkainen, Tommi
    Chang, Zheng
    Cong, Fengyu
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 316 - 325