Anomaly Detection using 1D Convolutional Neural Networks for Surface Enhanced Raman Scattering

被引:15
|
作者
Mozaffari, M. Hamed [1 ]
Tay, Li-Lin [1 ]
机构
[1] Natl Res Council Canada, Metrol Res Ctr, Ottawa, ON, Canada
来源
SPIE FUTURE SENSING TECHNOLOGIES (2020) | 2020年 / 11525卷
关键词
Surface-enhanced Raman scattering; Convolutional neural networks; Raman spectroscopy; Anomaly detection; One-class classification; Deep learning; Pattern recognition; SPECTROSCOPY;
D O I
10.1117/12.2576447
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An accurate supervised classification technique requires a large training database with an equal number of samples in each category. However, in practice, data class imbalance is naturally inherent in detection and identification tasks. In an extreme case, one category of data has a majority of training samples (positive class), causing over-classifying. In these circumstances, the negative classes are either absent, poorly sampled or not well defined. Deep one-class classifiers are artificial neural networks developed to overfit the positive class samples. This unique situation constrains the network model to be trained data features just with the knowledge of the positive class. One well-known application of one-class classifiers is for anomaly detection problem, where the model stands out outliers. Recently, convolutional neural networks (CNNs) have outperformed previous machine learning methods in pattern recognition tasks. In this study, we proposed using a one-dimensional CNN model for anomaly detection in surface-enhanced Raman scattering (SERS) data acquired by portable Raman spectrometers. Raman spectroscopy technique has been widely adopted by first responders and military forces for the field analysis and identification of unknown hazardous materials. The performance and accuracy of the recognition method might compromise the success rate of an interrogation operation. Our experimental results revealed that a 1D CNN model could be used as a one-class classifier to distinguish anomalies in SERS data with a successful detection rate of 100 percent.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Surface Enhanced Raman Scattering Detection of Four Foodborne Pathogens Using Positively Charged Silver Nanoparticles and Convolutional Neural Networks
    Yang Yong
    Dong Hao
    Wang Shu
    Sang Yaosuo
    Li Zhigang
    Zhang Long
    Wang Chongwen
    Liu Yong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (15):
  • [2] Detection of visual pursuits using 1D convolutional neural networks
    Carneiro, Alex Torquato S.
    Coutinho, Flavio Luiz
    Morimoto, Carlos H.
    PATTERN RECOGNITION LETTERS, 2024, 179 : 45 - 51
  • [3] Real-time phonocardiogram anomaly detection by adaptive 1D Convolutional Neural Networks
    Kiranyaz, Serkan
    Zabihi, Morteza
    Rad, Ali Bahrami
    Ince, Turker
    Hamila, Ridha
    Gabbouj, Moncef
    NEUROCOMPUTING, 2020, 411 : 291 - 301
  • [4] Identification of antibiotic residues in aquatic products with surface-enhanced Raman scattering powered by 1-D convolutional neural networks
    Teng, Yuanjie
    Wang, Zhenni
    Zuo, Shaohua
    Li, Xin
    Chen, Yinxin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 289
  • [5] A Feature Compression Technique for Anomaly Detection Using Convolutional Neural Networks
    Liu, Shuyong
    Jiang, Hongrui
    Li, Sizhao
    Yang, Yang
    Shen, Linshan
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2020, : 40 - 43
  • [6] 1D convolutional neural networks and applications: A survey
    Kiranyaz, Serkan
    Avci, Onur
    Abdeljaber, Osama
    Ince, Turker
    Gabbouj, Moncef
    Inman, Daniel J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 151
  • [7] Unsupervised Hyperspectral Anomaly Detection with Convolutional Neural Networks
    Yilmaz, Fatma Nur
    Arisoy, Sertac
    Kayabol, Koray
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [8] Tracking Therapy Response in Glioblastoma Using 1D Convolutional Neural Networks
    Ortega-Martorell, Sandra
    Olier, Ivan
    Hernandez, Orlando
    Restrepo-Galvis, Paula D.
    Bellfield, Ryan A. A.
    Candiota, Ana Paula
    CANCERS, 2023, 15 (15)
  • [9] Segmentation of Stimulated Raman Microscopy Images using a 1D Convolutional Neural Network
    Mozaffari, M. Hamed
    Abdolghader, Pedram
    Tay, Li-Lin
    Stolow, Albert
    2022 PHOTONICS NORTH (PN), 2022,
  • [10] Supervised Anomaly Detection in Univariate Time-Series Using 1D Convolutional Siamese Networks
    Chatterjee, Ayan
    Thambawita, Vajira
    Riegler, Michael A.
    Halvorsen, Pal
    IEEE ACCESS, 2025, 13 : 70980 - 71006