Encapsulated subwavelength grating as a quasi-monolithic resonant reflector

被引:14
|
作者
Brueckner, Frank [1 ]
Friedrich, Daniel [2 ,3 ]
Britzger, Michael [2 ,3 ]
Clausnitzer, Tina [1 ]
Burmeister, Oliver [2 ,3 ]
Kley, Ernst-Bernhard [1 ]
Danzmann, Karsten [2 ,3 ]
Tuennermann, Andreas [1 ]
Schnabel, Roman [2 ,3 ]
机构
[1] Univ Jena, Inst Angew Phys, D-07743 Jena, Germany
[2] Leibniz Univ Hannover, Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Inst Gravitat Phys, D-30167 Hannover, Germany
来源
OPTICS EXPRESS | 2009年 / 17卷 / 26期
关键词
GRAVITATIONAL-WAVE DETECTORS; TRANSMISSION GRATINGS; THERMAL NOISE; TEST MASSES; COATINGS; MIRROR; DIFFRACTION; RADIATION; BAND;
D O I
10.1364/OE.17.024334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For a variety of laser interferometric experiments, the thermal noise of high-reflectivity multilayer dielectric coatings limits the measurement sensitivity. Recently, monolithic high-reflection waveguide mirrors with nanostructured surfaces have been proposed to reduce the thermal noise in interferometric measurements. Drawbacks of this approach are a highly complicated fabrication process and the high susceptibility of the nanostructured surfaces to damage and pollution. Here, we propose and demonstrate a novel quasi-monolithic resonant surface reflector that also avoids the thick dielectric stack of conventional mirrors but has a flat and robust surface. Our reflector is an encapsulated subwavelength grating that is based on silicon. We measured a high reflectivity of 93% for a wavelength of lambda = 1.55 mu m under normal incidence. Perfect reflectivities are possible in theory. (C) 2009 Optical Society of America
引用
收藏
页码:24334 / 24341
页数:8
相关论文
共 50 条
  • [1] QUASI-MONOLITHIC - AN ALTERNATIVE INTERMEDIATE APPROACH TO FULLY MONOLITHIC
    CALVIELLO, JA
    CAPPELLO, A
    BIE, P
    POMIAN, R
    MEIER, P
    MICROWAVE JOURNAL, 1986, 29 (05) : 243 - &
  • [2] Quasi-resonant cavity enhanced photodetector with a subwavelength grating
    Li, Gongqing
    Duan, Xiaofeng
    Yuan, Weifang
    Huang, Yongqing
    Liu, Kai
    Ren, Xiaomin
    CHINESE OPTICS LETTERS, 2022, 20 (03)
  • [3] Quasi-resonant cavity enhanced photodetector with a subwavelength grating
    李宫清
    段晓峰
    袁纬方
    黄永清
    刘凯
    任晓敏
    ChineseOpticsLetters, 2022, 20 (03) : 23 - 28
  • [4] Quasi-monolithic toroidal cross-clapacitor
    Lee, RD
    Kim, HJ
    Semenov, YP
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (02) : 538 - 541
  • [5] 12 GHz coplanar quasi-monolithic oscillator
    Wasige, E
    Kompa, G
    van Raay, F
    Scholz, W
    Rangelow, IW
    Kassing, R
    Bertram, S
    Hudek, P
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 227 - 228
  • [6] GaAsFET characterization in a quasi-monolithic Si environment
    Wasige, E
    Kompa, G
    van Raay, F
    Scholz, W
    Rangelow, IW
    Kassing, R
    Bertram, S
    Hudek, P
    1999 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-4, 1999, : 1889 - 1892
  • [7] A High Q, Quasi-Monolithic Optomechanical Inertial Sensor
    Carter, Jonathan
    Koehlenbeck, Sina
    Birckigt, Pascal
    Eberhardt, Ramona
    Heinzel, Gerhard
    Gerberding, Oliver
    2020 7TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS (INERTIAL 2020), 2020,
  • [8] Heat transfer improvement in quasi-monolithic integration technology
    Joodaki, M
    Kompa, G
    Hillmer, H
    Kassing, R
    JOURNAL OF MICROLITHOGRAPHY MICROFABRICATION AND MICROSYSTEMS, 2005, 4 (03):
  • [9] New generation quasi-monolithic integration technology (QMIT)
    Joodaki, M
    Kompa, G
    Hillmer, H
    52ND ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2002 PROCEEDINGS, 2002, : 641 - 645
  • [10] Interconnects analyses in quasi-monolithic integration technology (QMIT)
    Joodaki, M.
    Kricke, A.
    Hillmer, H.
    Kompa, G.
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING, 2006, : 229 - +