The Hypointense Liver Lesion on T2-Weighted MR Images and What It Means

被引:17
作者
Curvo-Semedo, Luis [1 ]
Brito, Jorge B. [1 ]
Seco, Miguel F. [1 ]
Costa, Joao F. [1 ]
Marques, Cristina B. [1 ]
Caseiro-Alves, Filipe [1 ]
机构
[1] Coimbra Univ Hosp, Dept Radiol, P-3000075 Coimbra, Portugal
关键词
FOCAL NODULAR HYPERPLASIA; SMALL HEPATOCELLULAR-CARCINOMA; REGENERATIVE NODULES; ETHANOL INJECTION; IMAGING FINDINGS; COPPER CONTENT; IRON; CT; INVOLVEMENT; FERRITIN;
D O I
10.1148/rg.e38
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The vast majority of focal liver lesions are hyperintense on T2-weighted magnetic resonance (MR) images. Rarely, however, hepatic nodules may appear totally or partially hypointense on those images. Causes for this uncommon appearance include deposition of iron, calcium, or copper and are related to the presence of blood degradation products, macromolecules, coagulative necrosis, and other conditions. Although rare, low signal intensity relative to surrounding liver on T2-weighted images may be seen in a wide spectrum of lesions. Examples include cases of focal nodular hyperplasia, hepatocellular adenoma, hepatocellular carcinoma, metastases, leyomioma, siderotic or dysplastic nodules, nodules in Wilson disease, granuloma, and hydatid cyst. On fat-suppressed T2-weighted images, nodules with a lipomatous component, such as lipoma, angiomyolipoma, hepatocellular adenoma, and hepatocellular carcinoma may also appear partially or totally hypointense. The conjunction of other MR imaging findings and their integration in the clinical setting may allow a correct diagnosis in a considerable proportion of cases. The cause for T2-weighted hypointensity may not be, however, always recognized, and only pathologic correlation may provide the answer. The aims of this work are to discuss the causes and mechanisms of hypointensity of liver lesions on T2-weighted images and proposing an algorithm for classification that may be useful as a quick reminder for the interested reader.
引用
收藏
页数:24
相关论文
共 50 条
[31]   Fully automated convolutional neural network-based affine algorithm improves liver registration and lesion co-localization on hepatobiliary phase T1-weighted MR images [J].
Hasenstab, Kyle A. ;
Cunha, Guilherme Moura ;
Higaki, Atsushi ;
Ichikawa, Shintaro ;
Wang, Kang ;
Delgado, Timo ;
Brunsing, Ryan L. ;
Schlein, Alexandra ;
Bittencourt, Leornado Kayat ;
Schwartzman, Armin ;
Fowler, Katie J. ;
Hsiao, Albert ;
Sirlin, Claude B. .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)
[32]   Additional values of high-resolution gadoxetic acid-enhanced MR cholangiography for evaluating the biliary anatomy of living liver donors: Comparison with T2-weighted MR cholangiography and conventional gadoxetic acid-enhanced MR cholangiography [J].
Kang, Hyo-Jin ;
Lee, Jeong Min ;
Yoon, Jeong Hee ;
Joo, Ijin ;
Chang, Won ;
Suh, Kyung-Suk ;
Lee, Kwang-Woong ;
Yi, Nam-Joon ;
Han, Joon Koo .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (01) :152-159
[33]   A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI [J].
Sunoqrot, Mohammed R. S. ;
Selnaes, Kirsten M. ;
Sandsmark, Elise ;
Nketiah, Gabriel A. ;
Zavala-Romero, Olmo ;
Stoyanova, Radka ;
Bathen, Tone F. ;
Elschot, Mattijs .
DIAGNOSTICS, 2020, 10 (09)
[34]   Perirenal lymphatic systems: Evaluation using spectral presaturation with inversion recovery T2-weighted MR images with 3D volume isotropic turbo spin-echo acquisition at 3.0T [J].
Matsumoto, Shunro ;
Mori, Hiromu ;
Kiyonaga, Maki ;
Yamada, Yasunari ;
Takaji, Ryo ;
Sato, Fuminori ;
Mimata, Hiromitsu ;
Hijiya, Naoki ;
Moriyama, Masatsugu ;
Tanoue, Rika ;
Tomonari, Kenichiro ;
Matsumoto, Tomohiro ;
Hasebe, Terumitsu .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (04) :897-905
[35]   Associating Peritoneal Metastasis With T2-Weighted MRI Images in Epithelial Ovarian Cancer Using Deep Learning and Radiomics: A Multicenter Study [J].
Wei, Mingxiang ;
Zhang, Yu ;
Ding, Cong ;
Jia, Jianye ;
Xu, Haimin ;
Dai, Yao ;
Feng, Guannan ;
Qin, Cai ;
Bai, Genji ;
Chen, Shuangqing ;
Wang, Hong .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, :122-131
[36]   Automated Quantification of Brain Lesion Volume From Post-trauma MR Diffusion-Weighted Images [J].
Mistral, Thomas ;
Roca, Pauline ;
Maggia, Christophe ;
Tucholka, Alan ;
Forbes, Florence ;
Doyle, Senan ;
Krainik, Alexandre ;
Galanaud, Damien ;
Schmitt, Emmanuelle ;
Kremer, Stephane ;
Kastler, Adrian ;
Tropres, Irene ;
Barbier, Emmanuel L. ;
Payen, Jean-Francois ;
Dojat, Michel .
FRONTIERS IN NEUROLOGY, 2022, 12
[37]   Sonographic Features of Small (< 4 cm) Renal Tumors With Low Signal Intensity on T2-Weighted MR Images: Differentiating Minimal-Fat Angiomyolipoma From Renal Cell Carcinoma [J].
Park, Kye Jin ;
Kim, Mi-Hyun ;
Kim, Jeong Kon ;
Cho, Kyoung-Sik .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (03) :605-613
[38]   T staging of rectal cancer: Accuracy of diffusion-weighted imaging compared with T2-weighted imaging on 3.0 tesla MRI [J].
Feng, Qi ;
Yan, Yun Qi ;
Zhu, Jiong ;
Xu, Jian Rong .
JOURNAL OF DIGESTIVE DISEASES, 2014, 15 (04) :188-194
[39]   Texture analysis of ultrahigh field T2*-weighted MR images of the brain: Application to Huntington's disease [J].
Nhat Trung Doan ;
van den Bogaard, Simon J. A. ;
Dumas, Eve M. ;
Webb, Andrew G. ;
van Buchem, Mark A. ;
Roos, Raymund A. C. ;
van der Grond, Jeroen ;
Reiber, Johan H. C. ;
Milles, Julien .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (03) :633-640
[40]   Recovery of accurate T2 from historical 1.5 tesla proton density and T2-weighted images: Application to 7-year T2 changes in multiple sclerosis brain [J].
Uddin, Md. Nasir ;
McPhee, Kelly C. ;
Blevins, Gregg ;
Wilman, Alan H. .
MAGNETIC RESONANCE IMAGING, 2017, 37 :21-26