Tempo tracking and rhythm quantization by sequential Monte Carlo

被引:0
|
作者
Cemgil, AT [1 ]
Kappen, B [1 ]
机构
[1] Univ Nijmegen, SNN, NL-6525 EZ Nijmegen, Netherlands
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a probabilistic generative model for timing deviations in expressive music performance. The structure of the proposed model is equivalent to a switching state space model. We formulate two well known music recognition problems, namely tempo tracking and automatic transcription (rhythm quantization) as filtering and maximum a posteriori (MAP) state estimation tasks. The inferences are carried out using sequential Monte Carlo integration (particle filtering) techniques. For this purpose, we have derived a novel Viterbi algorithm for Rao-Blackwellized particle filters, where a subset of the hidden variables is integrated out. The resulting model is suitable for realtime tempo tracking and transcription and hence useful in a number of music applications such as adaptive automatic accompaniment and score typesetting.
引用
收藏
页码:1361 / 1368
页数:8
相关论文
共 50 条
  • [31] Multisensor fusion for target tracking using sequential Monte Carlo methods
    Vemula, Mahesh
    Djuric, Petar M.
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1223 - 1227
  • [32] Tracking variable number of targets using sequential Monte Carlo methods
    Ng, William
    Li, Jack
    Godsill, Simon
    Vermaak, Jaco
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 1207 - 1211
  • [33] Online multitarget detection and tracking using sequential Monte Carlo methods
    Li, J
    Ng, W
    Godsill, S
    Vermaak, J
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 115 - 121
  • [34] Multi-target tracking in clutter with sequential Monte Carlo methods
    Liu, B.
    Ji, C.
    Zhang, Y.
    Hao, C.
    Wong, K. -K.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (05): : 662 - 672
  • [35] Sequential Monte Carlo methods for collaborative multi-sensor tracking
    Li, Xinrong
    Yang, Jue
    2007 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-8, 2007, : 3189 - 3194
  • [36] Sequential Monte Carlo tracking by fusing multiple cues in video sequences
    Brasnett, Paul
    Mihaylova, Lyudmila
    Bull, David
    Canagarajah, Nishan
    IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1217 - 1227
  • [37] Sequential Quasi-Monte Carlo Filter for Visual Object Tracking
    Ding, Xiaofeng
    Xu, Lizhong
    Wang, Xin
    Lv, Guofang
    Wu, Xuewen
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [38] Sequential Monte Carlo methods for multiple target tracking and data fusion
    Hue, C
    Le Cadre, JP
    Pérez, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 309 - 325
  • [39] On Scale Invariant Features and Sequential Monte Carlo Sampling for Bronchoscope Tracking
    Luo, Xiongbiao
    Feuerstein, Marco
    Kitasaka, Takayuki
    Natori, Hiroshi
    Takabatake, Hirotsugu
    Hasegawa, Yoshinori
    Mori, Kensaku
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964
  • [40] Sequential Monte Carlo implementation for infrared/radar maneuvering target tracking
    Zhang, Gaoyu
    Liang, Jimin
    Zhao, Heng
    Yang, Wanhai
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5066 - +