From synchronization to Lyapunov exponents and back

被引:17
|
作者
Politi, Antonio
Ginelli, Francesco
Yanchuk, Serhiy
Maistrenko, Yuri
机构
[1] CNR, Ist Sist Complessi, I-50019 Sesto Fiorentino, Italy
[2] CEA Saclay, Serv Phys & Etat Condense, F-91191 Gif Sur Yvette, France
[3] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[4] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[5] Humboldt Univ, Math Inst, D-10099 Berlin, Germany
[6] Res Ctr Julich, Inst Med & Virtual Inst Neuromodulat, D-52425 Julich, Germany
关键词
synchronization; Lyapunov exponents;
D O I
10.1016/j.physd.2006.09.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is twofold. In the first part we discuss a general approach to determine Lyapunov exponents from ensemble rather than time averages. The approach passes through the identification of locally stable and unstable manifolds (the Lyapunov vectors), thereby revealing an analogy with generalized synchronization. The method is then applied to a periodically forced chaotic oscillator to show that the modulus of the Lyapunov exponent associated to the phase dynamics increases quadratically with the coupling strength and it is therefore different from zero already below the onset of phase synchronization. The analytical calculations are carried out for a model, the generalized special flow, that we construct as a simplified version of the periodically forced Rossler oscillator. (c) 2006 Elsevier BX All rights reserved.
引用
收藏
页码:90 / 101
页数:12
相关论文
共 50 条
  • [41] LYAPUNOV EXPONENTS FOR PEDESTRIANS
    EARNSHAW, JC
    HAUGHEY, D
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) : 401 - 407
  • [42] ISENTROPES AND LYAPUNOV EXPONENTS
    Buczolich, Zoltan
    Keszthelyi, Gabriella
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 1989 - 2009
  • [43] Differentiability of Lyapunov Exponents
    Thiago F. Ferraiol
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2020, 26 : 289 - 310
  • [44] Quantum Lyapunov Exponents
    P. Falsaperla
    G. Fonte
    G. Salesi
    Foundations of Physics, 2002, 32 : 267 - 294
  • [45] A Method of Determining the Characteristics of Intermittent Generalized Synchronization Based on the Calculation of Local Lyapunov Exponents
    O. I. Moskalenko
    E. V. Evstifeev
    A. A. Koronovskii
    Technical Physics Letters, 2020, 46 : 792 - 795
  • [46] A Method of Determining the Characteristics of Intermittent Generalized Synchronization Based on the Calculation of Local Lyapunov Exponents
    Moskalenko, O. I.
    Evstifeev, E. V.
    Koronovskii, A. A.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (08) : 792 - 795
  • [47] Input driven synchronization of chaotic neural networks with analyticaly determined conditional Lyapunov exponents
    Culp, Jordan M.
    Nicola, Wilten
    NONLINEAR DYNAMICS, 2024, : 12131 - 12141
  • [48] Asymptotic stability of structural systems based on lyapunov exponents and moment Lyapunov exponents
    Doyle, MM
    Namachchivaya, NS
    VanRoessel, HJ
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (04) : 681 - 692
  • [49] On Khintchine exponents and Lyapunov exponents of continued fractions
    Fan, Ai-Hua
    Liao, Ling-Min
    Wang, Bao-Wei
    Wu, Jun
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 73 - 109
  • [50] A model-based method for computation of correlation dimension, Lyapunov exponents and synchronization from depth-EEG signals
    Shayegh, F. (farzaneh.shayegh@gmail.com), 1600, Elsevier Ireland Ltd (113):