Existence of ruled wrappings in hyperbolic 3-manifolds

被引:16
|
作者
Soma, Teruhiko [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
来源
GEOMETRY & TOPOLOGY | 2006年 / 10卷
关键词
D O I
10.2140/gt.2006.10.1173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a short elementary proof of an existence theorem of certain CAT(1) surfaces in open hyperbolic 3-manifolds. The main construction lemma in Calegari and Gabai's proof of Marden's Tameness Conjecture can be replaced by an applicable version of our theorem. Finally, we will give a short proof of the conjecture along their ideas.
引用
收藏
页码:1173 / 1184
页数:12
相关论文
共 50 条
  • [1] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [2] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [3] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [4] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [5] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973
  • [6] Exceptional hyperbolic 3-manifolds
    Gabai, David
    Trnkova, Maria
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 703 - 730
  • [7] Systoles of hyperbolic 3-manifolds
    Adams, CC
    Reid, AW
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 : 103 - 110
  • [8] VOLUMES OF HYPERBOLIC 3-MANIFOLDS
    NEUMANN, WD
    ZAGIER, D
    TOPOLOGY, 1985, 24 (03) : 307 - 332
  • [9] Balls in hyperbolic 3-manifolds
    Przeworski, A
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (01): : 161 - 171
  • [10] Existence and Uniqueness of Constant Mean Curvature Foliation of Asymptotically Hyperbolic 3-Manifolds
    Neves, Andre
    Tian, Gang
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (03) : 910 - 942