An Ensemble Machine Learning Method for Single and Clustered Cervical Cell Classification

被引:8
|
作者
Kuko, Mohammed [1 ]
Pourhomayoun, Mohammad [1 ]
机构
[1] Calif State Univ Los Angeles, Comp Sci Dept, Los Angeles, CA 90032 USA
来源
2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019) | 2019年
关键词
Cervical cancer; Cervical cytology; Pap smear; Liquid-based cytology; Machine vision; Machine Learning; Ensemble Learning;
D O I
10.1109/IRI.2019.00043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cervical Cancer was in recent history a major cause of death for women of childbearing age. This changed when in the 1950s the Papanicolaou (Pap smear) test was introduced to identify and diagnose cervical cancer in its infancy. The introduction of the Pap smear test dropped cervical cancer related deaths by 60% but still approximately 4,210 women die from cervical cancer in the United State annually. The goal of our research is to aid in the methods of identifying and classifying cervical cancer used in the Pap smear or Liquid-based Cytology (LBC) with cutting edge machine vision, and ensemble learning techniques. The contribution of this research is to develop an automated Pap smear screening system that identifies cells within a cervical cell slide sample and classify cells and clusters of cells as abnormal or normal as defined by the Bethesda System for reporting cervical cytology. Achieving an accuracy of 90.4% when evaluated with a five-fold cross-validation demonstrates promise in the creation of an automated Pap smear screening test.
引用
收藏
页码:216 / 222
页数:7
相关论文
共 50 条
  • [1] Single and Clustered Cervical Cell Classification with Ensemble and Deep Learning Methods
    Mohammed Kuko
    Mohammad Pourhomayoun
    Information Systems Frontiers, 2020, 22 : 1039 - 1051
  • [2] Single and Clustered Cervical Cell Classification with Ensemble and Deep Learning Methods
    Kuko, Mohammed
    Pourhomayoun, Mohammad
    INFORMATION SYSTEMS FRONTIERS, 2020, 22 (05) : 1039 - 1051
  • [3] A deep ensemble learning approach for squamous cell classification in cervical cancer
    Gangrade, Jayesh
    Kuthiala, Rajit
    Gangrade, Shweta
    Singh, Yadvendra Pratap
    Manoj, R.
    Solanki, Surendra
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [4] Explainable Ensemble Machine Learning Method for Credit Risk Classification
    Ben Ghozzi, Sirine
    Ben HajKacem, Mohamed Aymen
    Essoussi, Nadia
    2024 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS, INISTA, 2024,
  • [5] Ensemble learning method for classification: Integrating data envelopment analysis with machine learning
    An, Qingxian
    Huang, Siwei
    Han, Yuxuan
    Zhu, You
    COMPUTERS & OPERATIONS RESEARCH, 2024, 169
  • [6] Machine learning for assisting cervical cancer diagnosis: An ensemble approach
    Lu, Jiayi
    Song, Enmin
    Ghoneim, Ahmed
    Alrashoud, Mubarak
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 106 : 199 - 205
  • [7] An Application of Transfer Learning and Ensemble Learning Techniques for Cervical Histopathology Image Classification
    Xue, Dan
    Zhou, Xiaomin
    Li, Chen
    Yao, Yudong
    Rahaman, Md Mamunur
    Zhang, Jinghua
    Chen, Hao
    Zhang, Jinpeng
    Qi, Shouliang
    Sun, Hongzan
    IEEE ACCESS, 2020, 8 : 104603 - 104618
  • [8] Study on a confidence machine learning method based on ensemble learning
    Fang Chun Jiang
    Cluster Computing, 2017, 20 : 3357 - 3368
  • [9] Study on a confidence machine learning method based on ensemble learning
    Jiang, Fang Chun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (04): : 3357 - 3368
  • [10] A novel ensemble machine learning for robust microarray data classification
    Peng, Yonghong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2006, 36 (06) : 553 - 573