Construction of orthogonal multi-wavelets using generalized-affine fractal interpolation functions

被引:4
|
作者
Bouboulis, P. [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun Telecommun & Signal Pr, Athens 15784, Greece
关键词
fractal interpolation functions; fractal interpolation surfaces; fractals; moments; Holder; multi-wavelets; ITERATED FUNCTION SYSTEMS; MINKOWSKI DIMENSION; SURFACES; MULTIRESOLUTION; MULTIWAVELETS; GRIDS;
D O I
10.1093/imamat/hxp027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new construction of fractal interpolation surfaces defined on arbitrary rectangular lattices. We use this construction to form finite sets of fractal interpolation functions (FIFs) that generate multiresolution analyses of L(2)(R(2)) of multiplicity r. These multiresolution analyses are based on the dilation properties of the construction. The associated multi-wavelets are orthogonal and discontinuous functions. We give concrete examples to illustrate the method and generalize it to form multiresolution analyses of L(2)(R(d)), d > 2. To this end, we prove some results concerning the Holder exponent of FIFs defined on [0, 1](d).
引用
收藏
页码:904 / 933
页数:30
相关论文
共 50 条
  • [31] On the construction of recurrent fractal interpolation functions using Geraghty contractions
    Attia, Najmeddine
    Jebali, Hajer
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (11): : 6866 - 6880
  • [32] Generalized cubic spline fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 655 - 676
  • [33] Constructions of orthogonal and biorthogonal scaling functions and multiwavelets using fractal interpolation surfaces
    Kessler, B
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 124, 2002, 124 : 195 - 251
  • [34] Moving object edge detection and segmentation using multi-wavelets
    Ozkaramali, H.
    Baradarani, A.
    Demirel, H.
    Ozmen, B.
    Celik, T.
    2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 734 - +
  • [35] CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS
    Yu, Binyan
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [36] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770
  • [37] Fractal PN signals for broadband communications: Interpolation functions and PN wavelets
    Freeland, GC
    Durrani, TS
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 1802 - 1805
  • [38] Construction of affine fractal functions close to classical interpolants
    Navascues, M. A.
    Sebastian, M. V.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2007, 9 (03) : 271 - 285
  • [39] Numerical evaluation of the Hankel transform by using linear Legendre multi-wavelets
    Singh, Vineet K.
    Singh, Om R.
    Pandey, Rajesh K.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (06) : 424 - 429
  • [40] Comparative image compression performance analysis of multi-wavelets constructed using B-spline super functions
    Özkaramanli, H
    Özmen, B
    ELECTRONICS LETTERS, 2003, 39 (22) : 1578 - 1579