Construction of orthogonal multi-wavelets using generalized-affine fractal interpolation functions

被引:4
|
作者
Bouboulis, P. [1 ]
机构
[1] Univ Athens, Dept Informat & Telecommun Telecommun & Signal Pr, Athens 15784, Greece
关键词
fractal interpolation functions; fractal interpolation surfaces; fractals; moments; Holder; multi-wavelets; ITERATED FUNCTION SYSTEMS; MINKOWSKI DIMENSION; SURFACES; MULTIRESOLUTION; MULTIWAVELETS; GRIDS;
D O I
10.1093/imamat/hxp027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new construction of fractal interpolation surfaces defined on arbitrary rectangular lattices. We use this construction to form finite sets of fractal interpolation functions (FIFs) that generate multiresolution analyses of L(2)(R(2)) of multiplicity r. These multiresolution analyses are based on the dilation properties of the construction. The associated multi-wavelets are orthogonal and discontinuous functions. We give concrete examples to illustrate the method and generalize it to form multiresolution analyses of L(2)(R(d)), d > 2. To this end, we prove some results concerning the Holder exponent of FIFs defined on [0, 1](d).
引用
收藏
页码:904 / 933
页数:30
相关论文
共 50 条
  • [21] Parameter Estimation using Multi-Wavelets
    Preisig, Heinz A.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 367 - 372
  • [22] Construction of orthonormal multi-wavelets with additional vanishing moments
    Charles K. Chui
    Jian-ao Lian
    Advances in Computational Mathematics, 2006, 24 : 239 - 262
  • [23] Alperts multi-wavelets from spline super-functions
    Özkaramanli, H
    Bhatti, A
    Kabakli, T
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 3665 - 3668
  • [24] Comparing field data using Alpert multi-wavelets
    Salloum, Maher
    Karlson, Kyle N.
    Jin, Helena
    Brown, Judith A.
    Bolintineanu, Dan S.
    Long, Kevin N.
    COMPUTATIONAL MECHANICS, 2020, 66 (04) : 893 - 910
  • [25] Comparing field data using Alpert multi-wavelets
    Maher Salloum
    Kyle N. Karlson
    Helena Jin
    Judith A. Brown
    Dan S. Bolintineanu
    Kevin N. Long
    Computational Mechanics, 2020, 66 : 893 - 910
  • [26] On linear transformation of generalized affine fractal interpolation function
    Attia, Najmeddine
    Amami, Rim
    AIMS MATHEMATICS, 2024, 9 (07): : 16848 - 16862
  • [27] CONSTRUCTION OF NEW AFFINE AND NON-AFFINE FRACTAL INTERPOLATION FUNCTIONS THROUGH THE WEYL-MARCHAUD DERIVATIVE
    Priyanka, T. M. C.
    Gowrisankar, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)
  • [28] AN ALGORITHM FOR CONSTRUCTING ORTHOGONAL ARMLET MULTI-WAVELETS WITH MULTIPLICITY r AND DILATION FACTOR a
    Zhou Xiaohui Wang Gang Wang BaoqinSchool of Mathematics ScienceXinjiang Normal UniversityUrumqi China
    JournalofElectronics(China), 2011, 28(Z1) (China) : 643 - 651
  • [29] AN ALGORITHM FOR CONSTRUCTING ORTHOGONAL ARMLET MULTI-WAVELETS WITH MULTIPLICITY r AND DILATION FACTOR a
    Zhou Xiaohui Wang Gang Wang Baoqin?(School of Mathematics Science
    Journal of Electronics(China), 2011, (Z1) : 643 - 651
  • [30] ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS
    Hsieh, Liang-Yu
    Luor, Dah-Chin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1321 - 1330