On the Girth of Three-Dimensional Algebraically Defined Graphs with Multiplicatively Separable Functions

被引:1
作者
Kodess, Alex M. [1 ]
Kronenthal, Brian G. [2 ]
Wong, Tony W. H. [2 ]
机构
[1] Farmingdale State Coll, Dept Math, Farmingdale, NY 11735 USA
[2] Kutztown Univ Penn, Dept Math, Kutztown, PA USA
关键词
UNIQUENESS;
D O I
10.37236/9749
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a field F and functions f, g, h, j : F -> F, we define Gamma(F)(f(X)h(Y), g(X)j(Y)) to be a bipartite graph where each partite set is a copy of F-3, and a vertex (a, a(2), a(3)) in the first partite set is adjacent to a vertex [x, x(2,) x(3)] in the second partite set if and only if a(2) + x(2) = f(a)h(x) and a(3) + x(3) = g(a)j(x). In this paper, we completely classify all such graphs by girth in the case h = j (subject to some mild restrictions on h). We also present a partial classification when h not equal j and provide some applications.
引用
收藏
页数:16
相关论文
共 26 条
  • [1] UNCOUNTABLE FIELDS HAVE PROPER UNCOUNTABLE SUBFIELDS
    BUTCHER, RS
    HAMILTON, WL
    MILCETICH, JG
    [J]. MATHEMATICS MAGAZINE, 1985, 58 (03) : 171 - 172
  • [2] Coulter R.S., 2019, MATH MAG, V92, P288
  • [3] Dmytrenko V., 2004, THESIS U DELAWARE
  • [4] On monomial graphs of girth eight
    Dmytrenko, Vasyl
    Lazebnik, Felix
    Williford, Jason
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (04) : 828 - 842
  • [5] On the girth of two-dimensional real algebraically defined graphs
    Ganger, Allison J.
    Golden, Shannon N.
    Kronenthal, Brian G.
    Lyons, Carter A.
    [J]. DISCRETE MATHEMATICS, 2019, 342 (10) : 2834 - 2842
  • [6] Goldstern M., 2011, COHEN REALS STRONG M
  • [7] Grundhofer T., 2007, CLASSICAL FIELDS STR
  • [8] Hamkins J.D., 2011, WEIRD SUBFIELDS R
  • [9] Proof of a conjecture on monomial graphs
    Hou, Xiang-dong
    Lappano, Stephen D.
    Lazebnik, Felix
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 : 42 - 68
  • [10] Kodess A., 2014, THESIS U DELAWARE