Depth-Aware Salient Object Detection and Segmentation via Multiscale Discriminative Saliency Fusion and Bootstrap Learning

被引:202
作者
Song, Hangke [1 ]
Liu, Zhi [1 ]
Du, Huan [2 ,3 ]
Sun, Guangling [1 ]
Le Meur, Olivier [4 ]
Ren, Tongwei [5 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
[3] Minist Publ Secur, Res Inst 3, Shanghai 201204, Peoples R China
[4] Univ Rennes 1, IRISA, F-35042 Rennes, France
[5] Nanjing Univ, Software Inst, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Depth information; discriminative saliency fusion; random forest; saliency detection; salient object segmentation; VISUAL-ATTENTION; IMAGE; MODEL; MAXIMIZATION; EXTRACTION;
D O I
10.1109/TIP.2017.2711277
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel depth-aware salient object detection and segmentation framework via multiscale discriminative saliency fusion (MDSF) and bootstrap learning for RGBD images (RGB color images with corresponding Depth maps) and stereoscopic images. By exploiting low-level feature contrasts, mid-level feature weighted factors and high-level location priors, various saliency measures on four classes of features are calculated based on multiscale region segmentation. A random forest regressor is learned to perform the discriminative saliency fusion (DSF) and generate the DSF saliency map at each scale, and DSF saliency maps across multiple scales are combined to produce the MDSF saliency map. Furthermore, we propose an effective bootstrap learning-based salient object segmentation method, which is bootstrapped with samples based on the MDSF saliency map and learns multiple kernel support vector machines. Experimental results on two large datasets show how various categories of features contribute to the saliency detection performance and demonstrate that the proposed framework achieves the better performance on both saliency detection and salient object segmentation.
引用
收藏
页码:4204 / 4216
页数:13
相关论文
共 58 条
[1]  
[Anonymous], P AS C COMP VIS
[2]  
[Anonymous], 2005, P INT C NEUR INF PRO
[3]  
[Anonymous], 2007, Computer Vision and Pattern Recognition (CVPR), IEEE Conference on
[4]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[5]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[6]  
Borji A, 2012, PROC CVPR IEEE, P478, DOI 10.1109/CVPR.2012.6247711
[7]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[8]   Global Contrast Based Salient Region Detection [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Torr, Philip H. S. ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :569-582
[9]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416
[10]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893