Elliptical functions and ordinary differential equations

被引:1
作者
Chouikha, R [1 ]
机构
[1] UNIV PARIS 13,INST GALILEE,LAB ANAL GEOMETRIE & APPLICAT,UA CNRS 742,F-93430 VILLETANEUSE,FRANCE
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1997年 / 40卷 / 03期
关键词
D O I
10.4153/CMB-1997-034-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we detail some results of a previous note concerning a trigonometric expansion of the Weierstrass elliptic function {p(z); 2omega, 2omega'}. In particular, this implies its classical Fourier expansion. We use a direct integration method of the ODE: (E) is d(2)u/dt(2) = P(u,lambda), u(0) = sigma, du/dt(0) = tau where P(u) is a polynomial of degree n = 2 or 3. In this case, the bifurcations of (E) depend on one parameter only. Moreover, this global method seems not to apply to the cases N > 3.
引用
收藏
页码:276 / 284
页数:9
相关论文
共 7 条
[1]  
Arnold VI., 1980, CHAPITRES SUPPLEMENT
[2]  
CHOUIKHA R, 1988, CR ACAD SCI I-MATH, V306, P655
[3]  
KODAIRA K, 1986, COMPLEX MANIFOLDS DE
[4]  
Lang S., 1973, ELLIPTIC FUNCTIONS
[5]  
LEBESQUE H, 1975, LECONS SERIES TRIGOM
[6]  
Valiron G., 1948, THEORIE FONCTIONS, V2nd ed.
[7]  
Whittaker E. T., 1963, Cambridge Math. Lib.