Taming perturbative divergences in asymptotically safe gravity

被引:127
作者
Benedetti, Dario [2 ]
Machado, Pedro F. [1 ]
Saueressig, Frank [3 ,4 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, NL-3508 TD Utrecht, Netherlands
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[4] CNRS, URA 2306, F-91191 Gif Sur Yvette, France
基金
加拿大自然科学与工程研究理事会;
关键词
ONE-LOOP DIVERGENCES; RENORMALIZATION-GROUP; ULTRAVIOLET PROPERTIES; EVOLUTION EQUATION; EINSTEIN GRAVITY; QUANTUM-GRAVITY; NONRENORMALIZABILITY;
D O I
10.1016/j.nuclphysb.2009.08.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use functional renormalization group methods to study gravity minimally coupled to a free scalar field. This setup provides the prototype of a gravitational theory which is perturbatively non-renormalizable at one-loop level, but may possess a non-trivial renormalization group fixed point controlling its UV behavior. We show that such a fixed point indeed exists within the truncations considered, lending strong support to the conjectured asymptotic safety of the theory. In particular, we demonstrate that the counterterms responsible for its perturbative non-renormalizability have no qualitative effect on this feature. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 191
页数:24
相关论文
共 55 条
[1]   The spectral dimension of the universe is scale dependent [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[2]   Reconstructing the Universe [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW D, 2005, 72 (06)
[3]   Nonperturbative quantum de Sitter universe [J].
Ambjorn, J. ;
Gorlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICAL REVIEW D, 2008, 78 (06)
[4]  
[Anonymous], 1979, GEN RELATIVITY
[5]  
Avramidi I. G., 2000, Lect. Notes Phys. Monogr., V64, P1, DOI DOI 10.1007/3-540-46523-5
[6]   ASYMPTOTIC FREEDOM IN HIGHER-DERIVATIVE QUANTUM-GRAVITY [J].
AVRAMIDI, IG ;
BARVINSKY, AO .
PHYSICS LETTERS B, 1985, 159 (4-6) :269-274
[7]   QUANTIZING 4TH-ORDER GRAVITY THEORIES - THE FUNCTIONAL INTEGRAL [J].
BARTH, NH ;
CHRISTENSEN, SM .
PHYSICAL REVIEW D, 1983, 28 (08) :1876-1893
[8]   RENORMALIZATION-GROUP FOR NONRENORMALIZABLE THEORIES - EINSTEIN GRAVITY WITH A SCALAR FIELD [J].
BARVINSKY, AO ;
KAMENSHCHIK, AY ;
KARMAZIN, IP .
PHYSICAL REVIEW D, 1993, 48 (08) :3677-3694
[9]  
BENEDETTI D, 2009, ARXIV09012984
[10]  
Burgess C. P., 2004, LIVING REV RELATIV, V7, P5, DOI [DOI 10.12942/LRR-2004-5, 10.12942/lrr-2004-5]