miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses

被引:375
作者
Liu, Gang [1 ]
Friggeri, Arnaud [2 ,3 ]
Yang, Yanping [1 ]
Park, Young-Jun [1 ]
Tsuruta, Yuko [1 ]
Abraham, Edward [1 ]
机构
[1] Univ Alabama, Dept Med, Birmingham, AL 35294 USA
[2] Ctr Hosp Univ, Amiens, France
[3] INSERM, ERI 12, Amiens, France
基金
美国国家卫生研究院;
关键词
NF-KAPPA-B; EXPRESSION; INNATE; GENE; RECOGNITION; PROTEINS; IMMUNITY;
D O I
10.1073/pnas.0901216106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Toll-like receptors (TLRs) are major receptors that enable inflammatory cells to recognize invading microbial pathogens. MicroRNAs are small non-coding RNAs that play important regulatory roles in a variety of biological processes. In this study, we found that a microRNA, miR-147, was induced upon stimulation of multiple TLRs and functioned as a negative regulator of TLR-associated signaling events in murine macrophages. We first demonstrated that the NMES1 transcript was a functional primary miR-147. miR-147 was induced in LPS-stimulated mouse macrophages and under in vivo conditions in the lungs of LPS-treated mice. Expression of miR-147 was greater after cellular activation by TLR4 than after engagement of either TLR2 or TLR3, suggesting that maximal induction of miR-147 required activation of both NF-kappa B and IRF3. TLR4-induced miR-147 expression was both MyD88- and TRIF-dependent. The miR-147 promoter was responsive to TLR4 stimulation and both NF-kappa B and STAT1 alpha bound to the miR-147 promoter. miR-147 mimics or induced expression of miR-147 decreased, whereas miR-147 knockdown increased inflammatory cytokine expression in macrophages stimulated with ligands to TLR2, TLR3, and TLR4. These data demonstrate a negative-feedback loop in which TLR stimulation induces miR-147 to prevent excessive inflammatory responses.
引用
收藏
页码:15819 / 15824
页数:6
相关论文
共 24 条
[1]   Neutrophils and acute lung injury [J].
Abraham, E .
CRITICAL CARE MEDICINE, 2003, 31 (04) :S195-S199
[2]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[3]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[4]   Toll-like receptor signalling [J].
Akira, S ;
Takeda, K .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (07) :499-511
[5]   microRNAs: Tiny regulators with great potential [J].
Ambros, V .
CELL, 2001, 107 (07) :823-826
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Toll-like receptor signaling pathways [J].
Barton, GM ;
Medzhitov, R .
SCIENCE, 2003, 300 (5625) :1524-1525
[8]   Leucine-rich repeats and pathogen recognition in Toll-like receptors [J].
Bell, JK ;
Mullen, GED ;
Leifer, CA ;
Mazzoni, A ;
Davies, DR ;
Segal, DM .
TRENDS IN IMMUNOLOGY, 2003, 24 (10) :528-533
[9]   MicroRNA functions [J].
Bushati, Natascha ;
Cohen, Stephen M. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2007, 23 :175-205
[10]   IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors [J].
Honda, Kenya ;
Taniguchi, Tadatsugu .
NATURE REVIEWS IMMUNOLOGY, 2006, 6 (09) :644-658