Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

被引:113
作者
Ilyas, Suhaib Umer [1 ]
Pendyala, Rajashekhar [1 ]
Narahari, Marneni [2 ]
Susin, Lim [3 ]
机构
[1] Univ Teknol PETRONAS, Chem Engn Dept, Seri Iskandar 32610, Perak Darul Rid, Malaysia
[2] Univ Teknol PETRONAS, Fundamental & Appl Sci Dept, Seri Iskandar 32610, Perak Darul Rid, Malaysia
[3] Vantage Oilfield Solut Sdn Bhd, Suite A-8-06,Block A,Oasis Sq,2 Jalan PJU 1A-7A, Petaling Jaya 47301, Selangor, Malaysia
关键词
Alumina; Dispersion; Functionalization; Nanofluids; Rheology; Stability; Thermal oil; CONVECTIVE HEAT-TRANSFER; SURFACE MODIFICATION; PHYSICAL PROPERTIES; PRESSURE-DROP; CONDUCTIVITY ENHANCEMENT; TRANSFER PERFORMANCE; AL2O3; NANOFLUIDS; DIATHERMIC OIL; CFD ANALYSIS; VISCOSITY;
D O I
10.1016/j.enconman.2017.01.079
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5-3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100-2000 s(-1)). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 88 条
[1]   Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids [J].
Aberoumand, Sadegh ;
Jafarimoghaddam, Amin ;
Moravej, Mojtaba ;
Aberoumand, Hossein ;
Javaherdeh, Kourosh .
APPLIED THERMAL ENGINEERING, 2016, 101 :362-372
[2]   Experimental investigation on the convective heat transfer of nanofluid flow inside vertical helically coiled tubes under uniform wall temperature condition [J].
Akhavan-Behabadi, M. A. ;
Pakdaman, M. Fakoor ;
Ghazvini, M. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (04) :556-564
[3]   Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids [J].
Ali, Hafiz Muhammad ;
Arshad, Waqas .
ENERGY CONVERSION AND MANAGEMENT, 2015, 106 :793-803
[4]   Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid [J].
Amiri, Ahmad ;
Shanbedi, Mehdi ;
Yarmand, Hooman ;
Arzani, Hamed Khajeh ;
Gharehkhani, Samira ;
Montazer, Elham ;
Sadri, Rad ;
Sarsam, Wail ;
Chew, B. T. ;
Kazi, S. N. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 105 :355-367
[5]  
[Anonymous], RSC ADV
[6]   Dynamic viscosity of MWCNT/ZnO-engine oil hybrid nanofluid: An experimental investigation and new correlation in different temperatures and solid concentrations [J].
Asadi, Meisam ;
Asadi, Amin .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 76 :41-45
[7]   Convective transport in nanofluids [J].
Buongiorno, J .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (03) :240-250
[8]   Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid [J].
Chandrasekar, M. ;
Suresh, S. ;
Bose, A. Chandra .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (02) :210-216
[9]   Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J].
Chen, Meijie ;
He, Yurong ;
Zhu, Jiaqi ;
Kim, Dong Rip .
ENERGY CONVERSION AND MANAGEMENT, 2016, 112 :21-30
[10]   Surface modification of sub-micron spherical SiO2 particles with butanedioic acid for electrophoresis in tetrachloroethylene [J].
Cheng, Bing ;
Wang, Xiufeng ;
Wang, Liesong ;
Wu, Yuanting .
MATERIALS LETTERS, 2007, 61 (06) :1350-1353