Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves

被引:101
作者
Auroux, Denis [1 ]
Katzarkov, Ludmil
Orlov, Dmitri
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Russian Acad Sci, Steklov Math Inst, Algebra Sect, Moscow 119991, Russia
基金
美国国家科学基金会;
关键词
Line Bundle; Symplectic Form; Theta Function; Cohomology Class; Pezzo Surface;
D O I
10.1007/s00222-006-0003-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study homological mirror symmetry for Del Pezzo surfaces and their mirror Landau-Ginzburg models. In particular, we show that the derived category of coherent sheaves on a Del Pezzo surface X-k obtained by blowing up CP2 at k points is equivalent to the derived category of vanishing cycles of a certain elliptic fibration W-k :M-k -> C with k+3 singular fibers, equipped with a suitable symplectic form. Moreover, we also show that this mirror correspondence between derived categories can be extended to noncommutative deformations of X-k , and give an explicit correspondence between the deformation parameters for X-k and the cohomology class [B+i omega]epsilon H-2 (M-k , C).
引用
收藏
页码:537 / 582
页数:46
相关论文
共 22 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]  
Arnold V.I, 1995, FLOER MEMORIAL VOLUM, V133, P99
[3]  
Artin M., 1990, PROGR MATH, V86, P33
[4]  
AUROUX D, IN PRESS ANN MATH
[5]  
Beilinson A.A., 1978, Funktsional. Anal. i Prilozhen., V12, P68, DOI DOI 10.1007/BF01681436
[6]  
BONDAL A, 1994, RUSSIAN ACAD SCI IZV, V42, P216
[7]   ENHANCED TRIANGULATED CATEGORIES [J].
BONDAL, AI ;
KAPRANOV, MM .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 70 (01) :93-107
[8]  
Fay J D., 1973, Theta Functions on Riemann Surfaces (Lecture Notes in Mathematics vol 352)
[9]  
Gompf R. E., 1999, GRAD STUD MATH, V20
[10]  
Kapustin A, 2003, J HIGH ENERGY PHYS