High density 3D memory architecture based on the resistive switching effect

被引:128
作者
Kuegeler, C. [1 ]
Meier, M. [1 ]
Rosezin, R. [1 ]
Gilles, S. [2 ]
Waser, R. [1 ,3 ,4 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Forschungszentrum Julich GmbH, Inst Bio & Nanosyst, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Werkstoffe Elektrotech 2, D-52074 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
关键词
3D memory devices; Resistive RAM; Methyl-silsesquioxane; Nanoimprint lithography; NONVOLATILE MEMORY; NANOIMPRINT; NIO;
D O I
10.1016/j.sse.2009.09.034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the fabrication of a 3D memory architecture based on the resistive switching effect. Resistive memory (RRAM) is under wide investigation since it is non-volatile, promises fast operation and can be integrated into high density architectures like crossbar arrays. Here, silver-doped methyl-silsesquioxane (MSQ) is integrated in crossbar array structures for the following reasons. First, the material at the same time provides good planarization properties so that emerging lithography techniques like nanoimprint lithography (NIL) are applicable. Second, we could prove that silver-doped MSQ can be used as resistive switching material on the nano scale. Using this technique, crossbar arrays with a minimum feature size of only 100 nm are stacked on each other and the functionality is proved by electrical characterization. This comprises the doubling of the memory density and furthermore even higher integration is in principle not limited by this technique, while the CMOS overhead increases only slightly. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1287 / 1292
页数:6
相关论文
共 28 条
[11]   A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte [J].
Kozicki, Michael N. ;
Gopalan, Chakravarthy ;
Balakrishnan, Muralikrishnan ;
Mitkova, Maria .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (05) :535-544
[12]  
Kozicki MN, 2005, 2005 Non-Volatile Memory Technology Symposium, Proceedings, P83
[13]   Nanoimprint for future non-volatile memory and logic devices [J].
Meier, M. ;
Nauenheim, C. ;
Gilles, S. ;
Mayer, D. ;
Kuegeler, C. ;
Waser, R. .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :870-872
[14]  
MEIER M, 2009, P 10 INT C ULT INT S, P143
[15]   A Nonvolatile Memory With Resistively Switching Methyl-Silsesquioxane [J].
Meier, Matthias ;
Schindler, Christina ;
Gilles, Sandra ;
Rosezin, Roland ;
Ruediger, Andreas ;
Kuegeler, Carsten ;
Waser, Rainer .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (01) :8-10
[16]   A novel reference scheme for reading passive resistive crossbar memories [J].
Mustafa, Jakob ;
Waser, Rainer .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (06) :687-691
[17]   Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM [J].
Russo, U. ;
Ielmini, D. ;
Cagli, C. ;
Lacaita, A. L. ;
Spiga, S. ;
Wiemer, C. ;
Perego, M. ;
Fanciulli, M. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :775-+
[18]   Electrical switching in sol-gel derived Ag-SiO2 nanocomposite thin films -: art. no. 084302 [J].
Sarkar, DK ;
Cloutier, F ;
El Khakani, MA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (08)
[19]   Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories [J].
Schindler, C. ;
Staikov, G. ;
Waser, R. .
APPLIED PHYSICS LETTERS, 2009, 94 (07)
[20]  
Schindler C, 2007, P NVMTS, P82