Fixed-structure Gaussian process model

被引:3
作者
Azman, Kristjan [1 ]
Kocijan, Jus [1 ,2 ]
机构
[1] Jozef Stefan Inst, Dept Syst & Control, Ljubljana 1000, Slovenia
[2] Univ Nova Gorica, Ctr Syst Informat Technol, Nova Gorica, Slovenia
关键词
non-linear identification; Gaussian processes model; linear parameter varying model; IDENTIFICATION;
D O I
10.1080/00207720903038028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article describes a method for modelling non-linear dynamic systems from measurement data. The method merges the linear local model blending approach in the velocity-based linearisation form with Bayesian Gaussian process (GP) modelling. The new Fixed-Structure GP (FSGP) model has a predetermined linear model structure with varying and probabilistic parameters represented by GP models. These models have several advantages for the modelling of local model parameters as they give us adequate results, even with small data sets. Furthermore, they provide a measure of the confidence in the prediction of the varying parameters and information about the dependence of the parameters on individual inputs. The FSGP model can be applied for the extended local linear equivalence class of non-linear systems. The obtained non-linear system model can be, for example, used for control-system design. The proposed modelling method is illustrated with a simple example of non-linear system modelling for control design.
引用
收藏
页码:1253 / 1262
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2000, ADV TK CONT SIGN PRO
[2]  
[Anonymous], 1997, THESIS CAMBRIDGE U C
[3]  
AZMAN K, 2005, INT C COMP SYST TECH
[4]  
AZMAN K, 2005, 28 INT CONV MIPRO CI, P79
[5]  
AZMAN K, 2006, INT CONTR C ICC 2006, P4
[6]   NONLINEAR PREDICTIVE CONTROL USING LOCAL MODELS - APPLIED TO A BATCH FERMENTATION PROCESS [J].
FOSS, BA ;
JOHANSEN, TA ;
SORENSEN, AV .
CONTROL ENGINEERING PRACTICE, 1995, 3 (03) :389-396
[7]  
Gregorcic Gregor, 2005, Intelligent Control Systems using Computational Intelligence Techniques, P177, DOI 10.1049/PBCE070E_ch6
[8]  
GREGORCIC G, 2003, IFAC ICONS C 2003 FA, P149
[9]   On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models [J].
Johansen, TA ;
Shorten, R ;
Murray-Smith, R .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (03) :297-313
[10]   Dynamic systems identification with Gaussian processes [J].
Kocijan, J ;
Girard, A ;
Banko, B ;
Murray-Smith, R .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (04) :411-424