A Hardware-Software Blueprint for Flexible Deep Learning Specialization

被引:86
作者
Moreau, Thierry [1 ]
Chen, Tianqi [2 ]
Vega, Luis [2 ]
Roesch, Jared [1 ]
Yan, Eddie [2 ]
Zheng, Lianmin [3 ]
Fromm, Josh [1 ]
Jiang, Ziheng [1 ]
Ceze, Luis [2 ]
Guestrin, Carlos [4 ]
Krishnamurthy, Arvind [5 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Univ Washington, Paul G Allen Sch Comp Sci & Engn Dept, Seattle, WA 98195 USA
[3] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[4] Univ Washington, Comp Sci & Engn Dept, Machine Learning, Seattle, WA 98195 USA
[5] Univ Washington, Comp Sci & Engn Dept, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
8;
D O I
10.1109/MM.2019.2928962
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article describes the Versatile Tensor Accelerator (VTA), a programmable DL architecture designed to be extensible in the face of evolving workloads. VTA achieves "flexible specialization" via a parameterizable architecture, two-level Instruction Set Architecture (ISA), and a Just in Time (JIT) compiler.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 8 条
  • [1] Chen T., 2015, P NEUR INF PROC SYST
  • [2] Chen TQ, 2018, PROCEEDINGS OF THE 13TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P579
  • [3] Chen W, 2018, CHIN AUTOM CONGR, P3389, DOI 10.1109/CAC.2018.8623478
  • [4] Jamieson K, 2016, JMLR WORKSH CONF PRO, V51, P240
  • [5] Jiang H, 2016, INT C PAR DISTRIB SY, P785, DOI [10.1109/ICPADS.2016.0107, 10.1109/ICPADS.2016.105]
  • [6] In-Datacenter Performance Analysis of a Tensor Processing Unit
    Jouppi, Norman P.
    Young, Cliff
    Patil, Nishant
    Patterson, David
    Agrawal, Gaurav
    Bajwa, Raminder
    Bates, Sarah
    Bhatia, Suresh
    Boden, Nan
    Borchers, Al
    Boyle, Rick
    Cantin, Pierre-luc
    Chao, Clifford
    Clark, Chris
    Coriell, Jeremy
    Daley, Mike
    Dau, Matt
    Dean, Jeffrey
    Gelb, Ben
    Ghaemmaghami, Tara Vazir
    Gottipati, Rajendra
    Gulland, William
    Hagmann, Robert
    Ho, C. Richard
    Hogberg, Doug
    Hu, John
    Hundt, Robert
    Hurt, Dan
    Ibarz, Julian
    Jaffey, Aaron
    Jaworski, Alek
    Kaplan, Alexander
    Khaitan, Harshit
    Killebrew, Daniel
    Koch, Andy
    Kumar, Naveen
    Lacy, Steve
    Laudon, James
    Law, James
    Le, Diemthu
    Leary, Chris
    Liu, Zhuyuan
    Lucke, Kyle
    Lundin, Alan
    MacKean, Gordon
    Maggiore, Adriana
    Mahony, Maire
    Miller, Kieran
    Nagarajan, Rahul
    Narayanaswami, Ravi
    [J]. 44TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2017), 2017, : 1 - 12
  • [7] Relay: A New IR for Machine Learning Frameworks
    Roesch, Jared
    Lyubomirsky, Steven
    Weber, Logan
    Pollock, Josh
    Kirisame, Marisa
    Chen, Tianqi
    Tatlock, Zachary
    [J]. MAPL'18: PROCEEDINGS OF THE 2ND ACM SIGPLAN INTERNATIONAL WORKSHOP ON MACHINE LEARNING AND PROGRAMMING LANGUAGES, 2018, : 58 - 68
  • [8] Smith J. E., 1982, 9th Annual Symposium on Computer Architecture, P112