Stabilization of locally minimal trees

被引:2
作者
Ivanov, A. O. [1 ]
Tuzhilin, A. A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Steiner's problem; Steiner minimal tree; shortest tree; shortest network; framed network; Euclidean network; stabilization of a network;
D O I
10.1134/S0001434609090247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that any locally minimal tree on Euclidean space can be "stabilized" (i.e., rendered shortest) by adding boundary vertices without changing the initial tree as a set in space. This result is useful for constructing examples of shortest trees.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 2 条
[1]  
Emelichev V. A., 1990, Lectures on Graph Theory
[2]  
Ivanov A. O., 2003, MODERN MATH