Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen

被引:51
作者
Fan, Zeyu [1 ]
Xiao, Wei [1 ,2 ]
机构
[1] Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
CH4; oxidation; hydrogen production; in situ CO2 conversion; methane conversion; molten salt electrochemistry; CONVERSION; ELECTRO;
D O I
10.1002/anie.202017243
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Industrial hydrogen production based on methane steam reforming (MSR) remains challenges in intensive carbon emissions, retarded hydrogen generation owing to coke deposition over catalysts and huge consumption of water. We herein report an electrochemical splitting of methane (ESM) in molten salts at 500 degrees C to produce hydrogen in an energy saving, emission-free and water-free manner. Following the most energy-saving route on methane-to-hydrogen conversion, methane is electrochemically oxidized at anode to generate carbon dioxide and hydrogen. The generated anodic carbon dioxide is in situ captured by the melts and reduced to solid carbon at cathode, enabling a spatial separation of anodic hydrogen generation from cathodic carbon deposition. Life-cycle assessment on hydrogen-generation technologies shows that the ESM experiences an equivalent carbon emission much lower than MSR, and a lower equivalent energy input than alkaline water electrolysis.
引用
收藏
页码:7664 / 7668
页数:5
相关论文
共 20 条
[1]   Atomically dispersed nickel as coke-resistant active sites for methane dry reforming [J].
Akri, Mohcin ;
Zhao, Shu ;
Li, Xiaoyu ;
Zang, Ketao ;
Lee, Adam F. ;
Isaacs, Mark A. ;
Xi, Wei ;
Gangarajula, Yuvaraj ;
Luo, Jun ;
Ren, Yujing ;
Cui, Yi-Tao ;
Li, Lei ;
Su, Yang ;
Pan, Xiaoli ;
Wen, Wu ;
Pan, Yang ;
Wilson, Karen ;
Li, Lin ;
Qiao, Botao ;
Ishii, Hirofumi ;
Liao, Yen-Fa ;
Wang, Aiqin ;
Wang, Xiaodong ;
Zhang, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   Catalytic decomposition of methane to produce hydrogen: A review [J].
Fan, Zeyu ;
Weng, Wei ;
Zhou, Jing ;
Gu, Dong ;
Xiao, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2021, 58 :415-430
[3]   Electrochemical Direct Partial Oxidation of Methane to Methanol [J].
Jang, Joonbaek ;
Shen, Kangze ;
Morales-Guio, Carlos G. .
JOULE, 2019, 3 (11) :2589-2593
[4]   Thermoeconomic analysis on a molten salt parabolic trough-based concentrated solar organic Rankine cycle system [J].
Li, Jun Fen ;
Guo, Hang ;
Meng, Qing Peng ;
Wu, Yu Ting ;
Ye, Fang ;
Ma, Chong Fang .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (05) :3395-3411
[5]   Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation [J].
Liu, Yan ;
Qin, Lang ;
Cheng, Zhuo ;
Goetze, Josh W. ;
Kong, Fanhe ;
Fan, Jonathan A. ;
Fan, Liang-Shih .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Catalysis for Selected C1 Chemistry [J].
Liu, Yanting ;
Deng, Dehui ;
Bao, Xinhe .
CHEM, 2020, 6 (10) :2497-2514
[7]   Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser [J].
Lu, Jinhai ;
Zhu, Changli ;
Pan, Changchang ;
Lin, Wenlie ;
Lemmon, John P. ;
Chen, Fanglin ;
Li, Chunsen ;
Xie, Kui .
SCIENCE ADVANCES, 2018, 4 (03)
[8]   Electrochemical Fixation of Carbon Dioxide in Molten Salts on Liquid Zinc Cathode to Zinc@Graphitic Carbon Spheres for Enhanced Energy Storage [J].
Lv, Teng ;
Xiao, Juanxiu ;
Weng, Wei ;
Xiao, Wei .
ADVANCED ENERGY MATERIALS, 2020, 10 (39)
[9]   Heading to Distributed Electrocatalytic Conversion of Small Abundant Molecules into Fuels, Chemicals, and Fertilizers [J].
Martin, Antonio Jose ;
Perez-Ramirez, Javier .
JOULE, 2019, 3 (11) :2602-2621
[10]   Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis [J].
Meng, Xianguang ;
Cui, Xiaoju ;
Rajan, N. Pethan ;
Yu, Liang ;
Deng, Dehui ;
Bao, Xinhe .
CHEM, 2019, 5 (09) :2296-2325