Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition

被引:87
作者
Tripathy, R. K. [1 ]
Sharma, L. N. [1 ]
Dandapat, S. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Elect & Elect Engn, Gauhati 781039, India
关键词
Shockable ventricular arrhythmia; Variational mode decomposition; Energy; Renyi entropy; Permutation entropy; Mutual information; Random forest; Accuracy; Sensitivity; FEATURE-SELECTION; FIBRILLATION; ECG; TACHYCARDIA; PREDICTION;
D O I
10.1007/s10916-016-0441-5
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Ventricular tachycardia (VT) and ventricular fibrillation (VF) are shockable ventricular cardiac ailments. Detection of VT/VF is one of the important step in both automated external defibrillator (AED) and implantable cardioverter defibrillator (ICD) therapy. In this paper, we propose a new method for detection and classification of shockable ventricular arrhythmia (VT/VF) and non-shockable ventricular arrhythmia (normal sinus rhythm, ventricular bigeminy, ventricular ectopic beats, and ventricular escape rhythm) episodes from Electrocardiogram (ECG) signal. The variational mode decomposition (VMD) is used to decompose the ECG signal into number of modes or sub-signals. The energy, the renyi entropy and the permutation entropy of first three modes are evaluated and these values are used as diagnostic features. The mutual information based feature scoring is employed to select optimal set of diagnostic features. The performance of the diagnostic features is evaluated using random forest (RF) classifier. Experimental results reveal that, the feature subset derived from mutual information based scoring and the RF classifier produces accuracy, sensitivity and specificity values of 97.23 %, 96.54 %, and 97.97 %, respectively. The proposed method is compared with some of the existing techniques for detection of shockable ventricular arrhythmia episodes from ECG.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 44 条
  • [1] Evaluating arrhythmias in ECG signals using wavelet transforms
    Addison, PS
    Watson, JN
    Clegg, GR
    Holzer, M
    Sterz, F
    Robertson, CE
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2000, 19 (05): : 104 - 109
  • [2] Detection of Life-Threatening Arrhythmias Using Feature Selection and Support Vector Machines
    Alonso-Atienza, Felipe
    Morgado, Eduardo
    Fernandez-Martinez, Lorena
    Garcia-Alberola, Arcadi
    Luis Rojo-Alvarez, Jose
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (03) : 832 - 840
  • [3] Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection
    Alonso-Atienza, Felipe
    Luis Rojo-Alvarez, Jose
    Rosado-Munoz, Alfredo
    Vinagre, Juan J.
    Garcia-Alberola, Arcadi
    Camps-Valls, Gustavo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) : 1956 - 1967
  • [4] Alshraideh H., 2015, J MED SYST, V39
  • [5] Alwan Y, 2015, IEEE ENG MED BIO, P310, DOI 10.1109/EMBC.2015.7318362
  • [6] Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators
    Amann, Anton
    Tratnig, Robert
    Unterkofler, Karl
    [J]. BIOMEDICAL ENGINEERING ONLINE, 2005, 4 (1)
  • [7] Detecting ventricular fibrillation by time-delay methods
    Amann, Anton
    Tratnig, Robert
    Unterkofler, Karl
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (01) : 174 - 177
  • [8] [Anonymous], J AM COLL CARDIOL
  • [9] [Anonymous], 2012, Clinical electrocardiography: A simplified approach
  • [10] Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory
    Arafat, Muhammad Abdullah
    Sieed, Jubair
    Hasan, Md. Kamrul
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (11) : 1051 - 1057