An existence theorem on fractional (g, f, n)-critical graphs

被引:0
作者
Sun, Zhiren [1 ]
Zhou, Sizhong [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Math & Phys, Mengxi Rd 2, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; minimum degree; neighborhood; fractional; (g; f)-factor; f; n)-critical graph; (F;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a, b, r and n be four nonnegative integers with 1 <= a <= b - r, and let G be a graph of order p with p >= (a+b-1)(a+b-2)+bn-1/a+r, and let g and f be two integer-valued functions defined on V(G) such that a <= g(x) <= f (x) - r <= b - r for every x is an element of V (G). A graph G is said to be fractional (g, f, n)-critical if for any N subset of V (G) with vertical bar N vertical bar = n, G - N contains a fractional (g, f)-factor. In this paper, we prove that G is fractional (g, f,n)-critical if vertical bar N-G(X)vertical bar > (b-r-l)p+vertical bar X vertical bar+bn-1/a+b-1 for every non-empty independent subset X of V (G), and delta(G) > (b-r-1)p+a+b+bn-2/a+b-1 Furthermore, the lower bound on vertical bar NG(X)vertical bar is sharp.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 11 条
[1]   Star subdivisions and connected even factors in the square of a graph [J].
Ekstein, Jan ;
Holub, Premysl ;
Kaiser, Tomas ;
Xiong, Liming ;
Zhang, Shenggui .
DISCRETE MATHEMATICS, 2012, 312 (17) :2574-2578
[2]   Minimum degree and disjoint cycles in generalized claw-free graphs [J].
Faudree, Ralph J. ;
Gould, Ronald J. ;
Jacobson, Michael S. .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (05) :875-883
[3]   f-factors, complete-factors, and component-deleted subgraphs [J].
Kimura, Kenji .
DISCRETE MATHEMATICS, 2013, 313 (13) :1452-1463
[4]  
Liu HX, 2010, ARS COMBINATORIA, V97, P183
[5]   On toughness and fractional (g, f, n)-critical graphs [J].
Liu, Shuli .
INFORMATION PROCESSING LETTERS, 2010, 110 (10) :378-382
[6]   Fan-type results for the existence of [a, b]-factors [J].
Matsuda, H .
DISCRETE MATHEMATICS, 2006, 306 (07) :688-693
[7]  
WOODALL DR, 1990, J LOND MATH SOC, V41, P385
[8]  
Zhou S., ACTA MATH S IN PRESS
[9]   A SUFFICIENT CONDITION FOR A GRAPH TO BE A FRACTIONAL (f, n)-CRITICAL GRAPH [J].
Zhou, Sizhong .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :409-415
[10]   Independence number, connectivity and (a, b, k)-critical graphs [J].
Zhou, Sizhong .
DISCRETE MATHEMATICS, 2009, 309 (12) :4144-4148