Universal classes of MV-chains with applications to many-valued logics

被引:0
作者
Gispert, J [1 ]
机构
[1] Univ Barcelona, Fac Matemat, Barcelona 08007, Spain
关键词
MV-algebra; universal class; quasivariety; Lukasiewicz many-valued propositional; calculus;
D O I
10.1002/1521-3870(200211)48:4<581::AID-MALQ581>3.0.CO;2-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we characterize, classify and axiomatize all universal classes of MV-chains. Moreover, we accomplish analogous characterization, classification and axiomatization for congruence distributive quasivarieties of MV-algebras. Finally, we apply those results to study some finitary extensions of the Lukasiewicz infinite valued propositional calculus.
引用
收藏
页码:581 / 601
页数:21
相关论文
共 28 条
  • [1] [Anonymous], 1990, B POLISH ACAD SCI SE
  • [2] [Anonymous], LECT NOTES MATH
  • [3] [Anonymous], 1989, MEMOIRS AM MATH SOC
  • [4] [Anonymous], 1983, LOGIC SEMANTICS META
  • [5] The subquasivariety lattice of a discriminator variety
    Blanco, J
    Campercholi, M
    Vaggione, D
    [J]. ADVANCES IN MATHEMATICS, 2001, 159 (01) : 18 - 50
  • [6] BLOOM SL, 1975, STUDIA LOGICA, V34, P1
  • [7] Ultraproducts of Z with an application to many-valued logics
    Brasó, JGI
    Mundici, D
    Torrell, AT
    [J]. JOURNAL OF ALGEBRA, 1999, 219 (01) : 214 - 233
  • [8] Burris S., 1981, A course in universal algebra
  • [9] Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI DOI 10.1090/S0002-9947-1958-0094302-9
  • [10] Chang C. C., 1959, Transactions of the American Mathematical Society, V93, P74, DOI [DOI 10.1090/S0002-9947-1959-0122718-1, 10.2307/1993423]