Nanofiber Channel Organic Electrochemical Transistors for Low-Power Neuromorphic Computing and Wide-Bandwidth Sensing Platforms

被引:64
作者
Lee, Sol-Kyu [1 ]
Cho, Young Woon [1 ]
Lee, Jong-Sung [1 ]
Jung, Young-Ran [1 ]
Oh, Seung-Hyun [1 ]
Sun, Jeong-Yun [1 ]
Kim, SangBum [1 ]
Joo, Young-Chang [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
nanofiber channel; neuromorphic; organic electrochemical transistors; sensors; ELECTRODES; DEVICE; MEMORY; ARRAY;
D O I
10.1002/advs.202001544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic neuromorphic computing/sensing platforms are a promising concept for local monitoring and processing of biological signals in real time. Neuromorphic devices and sensors with low conductance for low power consumption and high conductance for low-impedance sensing are desired. However, it has been a struggle to find materials and fabrication methods that satisfy both of these properties simultaneously in a single substrate. Here, nanofiber channels with a self-formed ion-blocking layer are fabricated to create organic electrochemical transistors (OECTs) that can be tailored to achieve low-power neuromorphic computing and fast-response sensing by transferring different amounts of electrospun nanofibers to each device. With their nanofiber architecture, the OECTs exhibit a low switching energy of 113 fJ and operate within a wide bandwidth (cut-off frequency of 13.5 kHz), opening a new paradigm for energy-efficient neuromorphic computing/sensing platforms in a biological environment without the leakage of personal information.
引用
收藏
页数:7
相关论文
共 38 条
[1]   How conducting polymer electrodes operate [J].
Berggren, Magnus ;
Malliaras, George G. .
SCIENCE, 2019, 364 (6437) :233-234
[2]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[3]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[4]  
Chen P.-Y., 2017, 2017 IEEE INT ELECT
[5]   NeuroSim: A Circuit-Level Macro Model for Benchmarking Neuro-Inspired Architectures in Online Learning [J].
Chen, Pai-Yu ;
Peng, Xiaochen ;
Yu, Shimeng .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (12) :3067-3080
[6]  
Chen PY, 2015, ICCAD-IEEE ACM INT, P194, DOI 10.1109/ICCAD.2015.7372570
[7]   PEDOT:PSS/Polyacrylamide Nanoweb: Highly Reliable Soft Conductors with Swelling Resistance [J].
Choi, Gwang Mook ;
Lim, Seung-Min ;
Lee, Yoo-Yong ;
Yi, Seol-Min ;
Lee, Young-Joo ;
Sun, Jeong-Yun ;
Joo, Young-Chang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) :10099-10107
[8]   A Na+ conducting hydrogel for protection of organic electrochemical transistors [J].
del Agua, I. ;
Porcarelli, L. ;
Curto, V. F. ;
Sanchez-Sanchez, A. ;
Ismailova, E. ;
Malliaras, G. G. ;
Mecerreyes, D. .
JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (18) :2901-2906
[9]   High-Performance Vertical Organic Electrochemical Transistors [J].
Donahue, Mary J. ;
Williamson, Adam ;
Strakosas, Xenofon ;
Friedlein, Jacob T. ;
McLeod, Robert R. ;
Gleskova, Helena ;
Malliaras, George G. .
ADVANCED MATERIALS, 2018, 30 (05)
[10]   Device physics of organic electrochemical transistors [J].
Friedlein, Jacob T. ;
McLeod, Robert R. ;
Rivnay, Jonathan .
ORGANIC ELECTRONICS, 2018, 63 :398-414