Rapid Bayesian position reconstruction for gravitational-wave transients

被引:288
|
作者
Singer, Leo P. [1 ]
Price, Larry R. [1 ]
机构
[1] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
关键词
PARAMETER-ESTIMATION; BINARY INSPIRALS; NEUTRON-STARS; ADVANCED LIGO; FOLLOW-UP; COUNTERPARTS; MERGERS; BURSTS; BOUNDS;
D O I
10.1103/PhysRevD.93.024013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Within the next few years, Advanced LIGO and Virgo should detect gravitational waves from binary neutron star and neutron star-black hole mergers. These sources are also predicted to power a broad array of electromagnetic transients. Because the electromagnetic signatures can be faint and fade rapidly, observing them hinges on rapidly inferring the sky location from the gravitational-wave observations. Markov chain Monte Carlo methods for gravitational-wave parameter estimation can take hours or more. We introduce BAYESTAR, a rapid, Bayesian, non-Markov chain Monte Carlo sky localization algorithm that takes just seconds to produce probability sky maps that are comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR will make it possible to search electromagnetic counterparts of compact binary mergers.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Amariutei, D. V.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barta, D.
    LIVING REVIEWS IN RELATIVITY, 2016, 19 : 1 - 39
  • [32] The gravitational-wave physics
    Cai, Rong-Gen
    Cao, Zhoujian
    Guo, Zong-Kuan
    Wang, Shao-Jiang
    Yang, Tao
    NATIONAL SCIENCE REVIEW, 2017, 4 (05) : 687 - 706
  • [33] THE GRAVITATIONAL-WAVE SKY
    LIPUNOV, VM
    NAZIN, SN
    PANCHENKO, IE
    POSTNOV, KA
    PROKHOROV, ME
    ASTRONOMY & ASTROPHYSICS, 1995, 298 (03) : 677 - 687
  • [34] GRAVITATIONAL-WAVE ASTRONOMY
    POISSON, E
    JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA, 1993, 87 (04) : 234 - 243
  • [35] GRAVITATIONAL-WAVE OBSERVATORIES
    JEFFRIES, AD
    SAULSON, PR
    SPERO, RE
    ZUCKER, ME
    SCIENTIFIC AMERICAN, 1987, 256 (06) : 50 - &
  • [36] Gravitational-wave sources
    Schutz, BF
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (11A) : A219 - A238
  • [37] GRAVITATIONAL-WAVE ASTRONOMY
    PRESS, U
    TORN, K
    USPEKHI FIZICHESKIKH NAUK, 1973, 110 (04): : 569 - 606
  • [38] GRAVITATIONAL-WAVE SCATTERING
    HANDLER, FA
    MATZNER, RA
    PHYSICAL REVIEW D, 1980, 22 (10) : 2331 - 2348
  • [39] GRAVITATIONAL-WAVE OBSERVATORY
    不详
    APPLIED OPTICS, 1990, 29 (18): : 2658 - 2658
  • [40] GRAVITATIONAL-WAVE ASTRONOMY
    TYSON, JA
    GIFFARD, RP
    ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1978, 16 : 521 - 554