Rapid Bayesian position reconstruction for gravitational-wave transients

被引:288
|
作者
Singer, Leo P. [1 ]
Price, Larry R. [1 ]
机构
[1] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
关键词
PARAMETER-ESTIMATION; BINARY INSPIRALS; NEUTRON-STARS; ADVANCED LIGO; FOLLOW-UP; COUNTERPARTS; MERGERS; BURSTS; BOUNDS;
D O I
10.1103/PhysRevD.93.024013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Within the next few years, Advanced LIGO and Virgo should detect gravitational waves from binary neutron star and neutron star-black hole mergers. These sources are also predicted to power a broad array of electromagnetic transients. Because the electromagnetic signatures can be faint and fade rapidly, observing them hinges on rapidly inferring the sky location from the gravitational-wave observations. Markov chain Monte Carlo methods for gravitational-wave parameter estimation can take hours or more. We introduce BAYESTAR, a rapid, Bayesian, non-Markov chain Monte Carlo sky localization algorithm that takes just seconds to produce probability sky maps that are comparable in accuracy to the full analysis. Prompt localizations from BAYESTAR will make it possible to search electromagnetic counterparts of compact binary mergers.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Bayesian inference analysis of unmodelled gravitational-wave transients
    Pannarale, Francesco
    Macas, Ronaldas
    Sutton, Patrick J.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (03)
  • [2] Semianalytic sensitivity estimates for catalogs of gravitational-wave transients
    Essick, Reed
    PHYSICAL REVIEW D, 2023, 108 (04)
  • [3] Bayesian reconstruction of gravitational-wave signals from binary black holes with nonzero eccentricities
    Dalya, Gergely
    Raffai, Peter
    Becsy, Bence
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (06)
  • [4] A hierarchical method for vetoing noise transients in gravitational-wave detectors
    Smith, Joshua R.
    Abbott, Thomas
    Hirose, Eiichi
    Leroy, Nicolas
    MacLeod, Duncan
    McIver, Jessica
    Saulson, Peter
    Shawhan, Peter
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (23)
  • [5] Classification methods for noise transients in advanced gravitational-wave detectors
    Powell, Jade
    Trifiro, Daniele
    Cuoco, Elena
    Heng, Ik Siong
    Cavaglia, Marco
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)
  • [6] Wider look at the gravitational-wave transients from GWTC-1 using an unmodeled reconstruction method
    Salemi, F.
    Milotti, E.
    Prodi, G. A.
    Vedovato, G.
    Lazzaro, C.
    Tiwari, S.
    Vinciguerra, S.
    Drago, M.
    Klimenko, S.
    PHYSICAL REVIEW D, 2019, 100 (04)
  • [7] Enhancing the localization of gravitational-wave hosts with SKYFAST: Rapid volume and inclination angle reconstruction
    Demasi, Gabriele
    Capurri, Giulia
    Ricciardone, Angelo
    Patricelli, Barbara
    Lenti, Massimo
    Del Pozzo, Walter
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [8] Pulsational pair-instability supernovae in gravitational-wave and electromagnetic transients
    Hendriks, D. D.
    van Son, L. A. C.
    Renzo, M.
    Izzard, R. G.
    Farmer, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (03) : 4130 - 4147
  • [9] Tarsier: A Light-Weight Framework for Visualizing Gravitational-Wave Transients
    Deligiannidis, Leonidas
    Yu, Chen-Hsiang
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 748 - 750
  • [10] An Image Analysis of Sky-Localization Maps of Gravitational-Wave Transients
    Deligiannidis, Leonidas
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 698 - 702