How to Design AI-Driven Clinical Trials in Nuclear Medicine

被引:11
作者
Delso, Gaspar [1 ]
Cirillo, Davide [2 ]
Kaggie, Joshua D. [3 ]
Valencia, Alfonso [2 ]
Metser, Ur [4 ]
Veit-Haibach, Patrick [4 ]
机构
[1] GE Healthcare, Chicago, IL USA
[2] Barcelona Supercomp Ctr, Barcelona, ES, Spain
[3] Univ Cambridge, Dept Radiol, Cambridge, England
[4] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
关键词
D O I
10.1053/j.semnuclmed.2020.09.003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is an overarching term for a multitude of technologies which are currently being discussed and introduced in several areas of medicine and in medical imaging specifically. There is, however, limited literature and information about how AI techniques can be integrated into the design of clinical imaging trials. This article will present several aspects of AI being used in trials today and how imaging departments and especially nuclear medicine departments can prepare themselves to be at the forefront of AI driven clinical trials. Beginning with some basic explanation on AI techniques currently being used and existing challenges of its implementation, it will also cover the logistical prerequisites which have to be in place in nuclear medicine departments to participate successfully in AI-driven clinical trials. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 119
页数:8
相关论文
共 65 条
[1]   Big hopes for big data [J].
不详 .
NATURE MEDICINE, 2020, 26 (01) :1-1
[2]  
[Anonymous], Machine Learning Ledger Orchestration For Drug Discovery (MELLODDY)
[3]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[4]  
Bender Eric, 2015, Nature, V527, pS1, DOI 10.1038/527S1a
[5]   How soon will digital endpoints become a cornerstone for future drug development? [J].
Boehme, Philip ;
Hansen, Arne ;
Roubenoff, Ronenn ;
Scheeren, Joseph ;
Herrmann, Maximilian ;
Mondritzki, Thomas ;
Ehlers, Jan ;
Truebel, Hubert .
DRUG DISCOVERY TODAY, 2019, 24 (01) :16-19
[6]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[7]  
Born Jannis, 2020, Research in Computational Molecular Biology. 24th Annual International Conference, RECOMB 2020. Proceedings. Lecture Notes in Bioinformatics. Subseries of Lecture Notes in Computer Science (LNBI 12074), P231, DOI 10.1007/978-3-030-45257-5_18
[8]   Conducting Research Using the Electronic Health Record Across Multi-Hospital Systems Semantic Harmonization Implications for Administrators [J].
Bowles, Kathryn H. ;
Potashnik, Sheryl ;
Ratcliffe, Sarah J. ;
Rosenberg, Melissa ;
Shih, Nai-Wei ;
Topaz, Maxim ;
Holmes, John H. ;
Naylor, Mary D. .
JOURNAL OF NURSING ADMINISTRATION, 2013, 43 (06) :355-360
[9]   Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions [J].
Choi H. .
Nuclear Medicine and Molecular Imaging, 2018, 52 (2) :109-118
[10]  
Consortium, 2017, F1000 RES, V6