Two-steps electrochemical polishing of laser powder bed fusion 316l stainless steel

被引:5
作者
Zhu, Haitao [1 ]
Rennie, Allan [1 ]
Li, Ruifeng [2 ]
Tian, Yingtao [1 ]
机构
[1] Univ Lancaster, Sch Engn, Lancaster LA1 4YW, England
[2] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
Laser powder bed fusion; Additive manufacturing; 316L stainless steel; Electrochemical polishing; Areal roughness; SURFACE; ROUGHNESS;
D O I
10.1016/j.surfin.2022.102442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser Powder Bed Fusion fabricated 316L stainless steel test components were electrochemically polished in a non-aqueous electrolytic solution consisting of 1M sodium chloride, ethylene glycol, and 10% ethanol, and in an aqueous commercial electrolyte A2. The influence of the high current densities ranging between 250 and 2000 mA/cm(2) on the surface roughness (Psa, Wsa and Ssa), materials removal weight and thickness reduction with various morphological characteristics were investigated. It is confirmed that polishing at the tranpassive region was feasible in non-aqueous electrolytes where little pitting occurred. A two-step electrochemical process was proposed based on the characterisations to enhance the polishing effect, which consisted of two processes with different electrolytes and current densities. The experimental results indicated that the surface roughness of two-step polished steels with 1500 and 250 mA/cm(2) current densities was reduced by 11.25% than the optimum result of the one-step EP with the non-aqueous electrolyte solution. The weight and thickness reduction were reduced by 3.39% and 9.02%, respectively, more than the optimum results of the one-step EP with the aqueous commercial electrolyte.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Investigation of Microstructures and Tensile Properties of 316L Stainless Steel Fabricated via Laser Powder Bed Fusion
    Chepkoech, Melody
    Owolabi, Gbadebo
    Warner, Grant
    MATERIALS, 2024, 17 (04)
  • [32] Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel
    Trejos-Taborda, Juan
    Reyes-Osorio, Luis
    Garza, Carlos
    del Carmen Zambrano-Robledo, Patricia
    Lopez-Botello, Omar
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (5-6) : 3947 - 3961
  • [33] Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing
    Zhang, Zilong
    Zhang, Tianyu
    Sun, Can
    Karna, Sivaji
    Yuan, Lang
    MICROMACHINES, 2024, 15 (02)
  • [34] An investigation on the oxidation behavior of spatters generated during the laser powder bed fusion of 316L stainless steel
    Lu, Chao
    Zhang, Ruihua
    Wei, Xiaohong
    Xiao, Mengzhi
    Yin, Yan
    Qu, Yuebo
    Li, Hui
    Liu, Pengyu
    Qiu, Xiaopan
    Guo, Tieming
    APPLIED SURFACE SCIENCE, 2022, 586
  • [35] Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Ren, Xudong
    Pfefferkorn, Frank E.
    ADDITIVE MANUFACTURING, 2020, 32
  • [36] Scratch and wear resistance of additive manufactured 316L stainless steel sample fabricated by laser powder bed fusion technique
    Upadhyay, Ram Krishna
    Kumar, Arvind
    WEAR, 2020, 458
  • [37] Influence of powder recycling on 316L stainless steel feedstocks and printed parts in laser powder bed fusion
    Delacroix, Timothee
    Lomello, Fernando
    Schuster, Frederic
    Maskrot, Hicham
    Garandet, Jean-Paul
    ADDITIVE MANUFACTURING, 2022, 50
  • [38] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Ali Eliasu
    Aleksander Czekanski
    Solomon Boakye-Yiadom
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 2651 - 2669
  • [39] Effect of laser powder bed fusion parameters on the microstructural evolution and hardness of 316L stainless steel
    Eliasu, Ali
    Czekanski, Aleksander
    Boakye-Yiadom, Solomon
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 113 (9-10) : 2651 - 2669
  • [40] Benchmarking of Print Properties and Microstructures of 316L Stainless Steel Laser Powder Bed Fusion Prints
    Gallant, Lucas
    Hsiao, Amy
    McSorley, Grant
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (09) : 4193 - 4202